Abstract
This study evaluated the Weather Research and Forecasting (WRF) Model sensitivity to different planetary boundary layer (PBL) schemes (the YSU and MYJ schemes) and urban schemes including the bulk scheme (BULK), single-layer urban canopy model (UCM), multilayer building environment parameterization (BEP) model, and multilayer building energy model (BEM). Daily reinitialization simulations were conducted over Dallas–Fort Worth during a dry summer month (July 2011) and a wet summer month (July 2015) with weaker (stronger) daytime (nocturnal) UHI in 2011 than 2015. All urban schemes overestimated the urban daytime 2-m temperature in both summers, but BEP and BEM still reproduced the daytime urban cool island in the dry summer. All urban schemes reproduced the nocturnal urban heat island, with BEP producing the weakest one due to its unrealistic urban cooling. BULK and UCM overestimated the urban canopy wind speed, while BEP and BEM underestimated it. The urban schemes showed prominent impact on daytime PBL profiles. UCM + MYJ showed a superior performance than other configurations. The relatively large (small) aspect ratio between building height and road width in UCM (BEM) was responsible for the overprediction (underprediction) of urban canopy temperature. The relatively low (high) building height in UCM (BEM) was responsible for the overprediction (underprediction) of urban canopy wind speed. Improving urban schemes and providing realistic urban parameters were critical for improving urban canopy simulation.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).