• Barlage, M., S. G. Miao, and F. Chen, 2016: Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities. J. Geophys. Res. Atmos., 121, 44874498, https://doi.org/10.1002/2015JD024450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownlee, J., P. Ray, M. Tewari, and H. Tan, 2017: Relative role of turbulent and radiative flux on the near-surface temperature in a single-layer urban canopy model over Houston. J. Appl. Meteor. Climatol., 56, 21732187, https://doi.org/10.1175/JAMC-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713, https://doi.org/10.1175/JAM2463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., and et al. , 2009: National Urban Database and Access Portal Tool. Bull. Amer. Meteor. Soc., 90, 11571168, https://doi.org/10.1175/2009BAMS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christen, A., and R. Vogt, 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421, https://doi.org/10.1002/joc.1074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, https://doi.org/10.1073/pnas.1322280111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 1992: The suburban energy balance: Methodological considerations and results for a mid-latitude West Coast city under winter and spring conditions. Int. J. Climatol., 12, 481497, https://doi.org/10.1002/joc.3370120506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutiérrez, E., J. E. Gonzalez, A. Martilli, R. Bornstein, and M. Arend, 2015: Simulations of a heat-wave event in New York City using a multilayer urban parameterization. J. Appl. Meteor. Climatol., 54, 283301, https://doi.org/10.1175/JAMC-D-14-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., J. C. Knievel, and Y. Wang, 2020: Addition of multilayer urban canopy models to a nonlocal planetary boundary layer parameterization and evaluation using ideal and real cases. J. Appl. Meteor. Climatol., 59, 13691392, https://doi.org/10.1175/JAMC-D-19-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., and M. Xue, 2016: Influence of synoptic sea-breeze fronts on the urban heat island intensity in Dallas–Fort Worth, Texas. Mon. Wea. Rev., 144, 14871507, https://doi.org/10.1175/MWR-D-15-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., F. Zhang, and J. W. Nielsen-Gammon, 2010a: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, https://doi.org/10.1029/2010GL043017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010b: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., M. Xue, P. M. Klein, B. G. Illston, and S. Chen, 2016: Analysis of urban effects in Oklahoma City using a dense surface observing network. J. Appl. Meteor. Climatol., 55, 723741, https://doi.org/10.1175/JAMC-D-15-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jänicke, B., F. Meier, D. Fenner, U. Fehrenbach, A. Holtmann, and D. Scherer, 2017: Urban-rural differences in near-surface air temperature as resolved by the Central Europe Refined analysis (CER): Sensitivity to planetary boundary layer schemes and urban canopy models. Int. J. Climatol., 37, 20632079, https://doi.org/10.1002/joc.4835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004a: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004b: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910, https://doi.org/10.1175/JAM2169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., S. A. McKeen, and D. J. Sailor, 2014: A regression approach for estimation of anthropogenic heat flux based on a bottom-up air pollutant emission database. Atmos. Environ., 95, 629633, https://doi.org/10.1016/j.atmosenv.2014.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013: Development and evaluation of a mosaic approach in the WRF-Noah framework. J. Geophys. Res. Atmos., 118, 11 91811 935, https://doi.org/10.1002/2013JD020657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, J. B., T. J. Wang, X. M. Wang, M. Xie, Z. Q. Jiang, X. X. Huang, and J. L. Zhu, 2014: Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China. Atmos. Res., 145–146, 226243, https://doi.org/10.1016/j.atmosres.2014.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project. J. Appl. Meteor. Climatol., 45, 912929, https://doi.org/10.1175/JAM2383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41, 12471266, https://doi.org/10.1175/1520-0450(2002)041<1247:NSOUIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemunaitis-Berry, K. L., P. M. Klein, J. B. Basara, and E. Fedorovich, 2017: Sensitivity of predictions of the urban surface energy balance and heat island to variations of urban canopy parameters in simulations with the WRF Model. J. Appl. Meteor. Climatol., 56, 573595, https://doi.org/10.1175/JAMC-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108 (455), 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, https://doi.org/10.1177/030913338801200401.

  • Reames, L. J., and D. J. Stensrud, 2017: Sensitivity of simulated urban–atmosphere interactions in Oklahoma City to urban parameterization. J. Appl. Meteor. Climatol., 56, 14051430, https://doi.org/10.1175/JAMC-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., M. Georgescu, J. M. Milne, and M. A. Hart, 2015: Development of a national anthropogenic heating database with an extrapolation for international cities. Atmos. Environ., 118, 718, https://doi.org/10.1016/j.atmosenv.2015.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., and A. Martilli, 2009: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, https://doi.org/10.1007/s00704-009-0143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2009: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, https://doi.org/10.1007/s00704-009-0142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, https://doi.org/10.1175/2010JAMC2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, and M. Moustaoui, 2015: Summertime response of temperature and cooling energy demand to urban expansion in a semiarid environment. J. Appl. Meteor. Climatol., 54, 17561772, https://doi.org/10.1175/JAMC-D-14-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., H. J. S. Fernando, A. F. Hamlet, J. J. Hellmann, M. Barlage, and F. Chen, 2017: Urban meteorological modeling using WRF: A sensitivity study. Int. J. Climatol., 37, 18851900, https://doi.org/10.1002/joc.4819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, https://doi.org/10.1175/BAMS-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38, 466473, https://doi.org/10.1175/1520-0450(1999)038<0466:MAMMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations Department of Economic and Social Affairs, 2012: World urbanization prospects, the 2011 revision. United Nations, 318 pp., https://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf.

  • Wickham, J., C. A. Barnes, M. S. Nash, and T. G. Wade, 2015: Combining NLCD and MODIS to create a land cover-albedo database for the continental United States. Remote Sens. Environ., 170, 143152, https://doi.org/10.1016/j.rse.2015.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winguth, A. M. E., and B. Kelp, 2013: The urban heat island of the north-central Texas region and its relation to the 2011 severe Texas drought. J. Appl. Meteor. Climatol., 52, 24182433, https://doi.org/10.1175/JAMC-D-12-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z.-H. Wang, F. Chen, S. Miao, M. Tewari, J. A. Voogt, and S. Myint, 2014: Enhancing hydrologic modelling in the coupled Weather Research and Forecasting–urban modelling system. Bound.-Layer Meteor., 155, 87109, https://doi.org/10.1007/s10546-014-9991-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z.-H. Wang, M. Georgescu, F. Chen, and M. Tewari, 2016: Assessing the impact of enhanced hydrological processes on urban hydrometeorology with application to two cities in contrasting climates. J. Hydrometeor., 17, 10311047, https://doi.org/10.1175/JHM-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 49
Full Text Views 42 42 17
PDF Downloads 64 64 25

Evaluating the Performance of WRF Urban Schemes and PBL Schemes over Dallas–Fort Worth during a Dry Summer and a Wet Summer

View More View Less
  • 1 a Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 b School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 c National Supercomputing Center, Wuxi, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study evaluated the Weather Research and Forecasting (WRF) Model sensitivity to different planetary boundary layer (PBL) schemes (the YSU and MYJ schemes) and urban schemes including the bulk scheme (BULK), single-layer urban canopy model (UCM), multilayer building environment parameterization (BEP) model, and multilayer building energy model (BEM). Daily reinitialization simulations were conducted over Dallas–Fort Worth during a dry summer month (July 2011) and a wet summer month (July 2015) with weaker (stronger) daytime (nocturnal) UHI in 2011 than 2015. All urban schemes overestimated the urban daytime 2-m temperature in both summers, but BEP and BEM still reproduced the daytime urban cool island in the dry summer. All urban schemes reproduced the nocturnal urban heat island, with BEP producing the weakest one due to its unrealistic urban cooling. BULK and UCM overestimated the urban canopy wind speed, while BEP and BEM underestimated it. The urban schemes showed prominent impact on daytime PBL profiles. UCM + MYJ showed a superior performance than other configurations. The relatively large (small) aspect ratio between building height and road width in UCM (BEM) was responsible for the overprediction (underprediction) of urban canopy temperature. The relatively low (high) building height in UCM (BEM) was responsible for the overprediction (underprediction) of urban canopy wind speed. Improving urban schemes and providing realistic urban parameters were critical for improving urban canopy simulation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinxin Wang, jinxin_wang@yeah.net

Abstract

This study evaluated the Weather Research and Forecasting (WRF) Model sensitivity to different planetary boundary layer (PBL) schemes (the YSU and MYJ schemes) and urban schemes including the bulk scheme (BULK), single-layer urban canopy model (UCM), multilayer building environment parameterization (BEP) model, and multilayer building energy model (BEM). Daily reinitialization simulations were conducted over Dallas–Fort Worth during a dry summer month (July 2011) and a wet summer month (July 2015) with weaker (stronger) daytime (nocturnal) UHI in 2011 than 2015. All urban schemes overestimated the urban daytime 2-m temperature in both summers, but BEP and BEM still reproduced the daytime urban cool island in the dry summer. All urban schemes reproduced the nocturnal urban heat island, with BEP producing the weakest one due to its unrealistic urban cooling. BULK and UCM overestimated the urban canopy wind speed, while BEP and BEM underestimated it. The urban schemes showed prominent impact on daytime PBL profiles. UCM + MYJ showed a superior performance than other configurations. The relatively large (small) aspect ratio between building height and road width in UCM (BEM) was responsible for the overprediction (underprediction) of urban canopy temperature. The relatively low (high) building height in UCM (BEM) was responsible for the overprediction (underprediction) of urban canopy wind speed. Improving urban schemes and providing realistic urban parameters were critical for improving urban canopy simulation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jinxin Wang, jinxin_wang@yeah.net
Save