• Andersen, T., and M. Shepherd, 2017: Inland tropical cyclones and the “brown ocean” concept. Hurricanes and Climate Change, J. M. Collins and K. Walsh, Eds., Springer, 117–134, https://doi.org/10.1007/978-3-319-47594-3_5.

    • Crossref
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1985: A numerical study of the effect of a mountain range on a landfalling tropical cyclone. Mon. Wea. Rev., 113, 567583, https://doi.org/10.1175/1520-0493(1985)113<0567:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, https://doi.org/10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., K. A. Reed, and J. A. Knaff, 2017: Physical understanding of the tropical cyclone wind-pressure relationship. Nat. Commun., 8, 1360, https://doi.org/10.1038/s41467-017-01546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312, https://doi.org/10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. M., and D. R. Roache, 2017: The 2016 North Atlantic hurricane season: A season of extremes. Geophys. Res. Lett., 44, 50715077, https://doi.org/10.1002/2017GL073390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounding unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., T. Ding, Y. Jia, and M. Altinakar, 2013: Developing a tropical cyclone parametric wind model with landfall effect for real-time prediction of wind and storm surge. Proc. 2013 IAHR Congress, Chengdu, China, IAHR, 10 902–10 915.

  • Ding, Y., T. Ding, A. Rusdin, Y. Zhang, and Y. Jia, 2020: Simulation and prediction of storm surge and wave using a fully integrated process model and a parametric cyclone wind model. J. Geophys. Res. Oceans, 125, e2019JC015793, https://doi.org/10.1029/2019JC015793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J. M., M. Ge, G. J. Holland, I. Dima-West, S. Phibbs, G. R. Saville, and Y. Wang, 2020: Modelling global tropical cyclone wind footprints. Nat. Hazards Earth Syst. Sci., 20, 567580, https://doi.org/10.5194/nhess-20-567-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872, https://doi.org/10.1175/2008MWR2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., R. S. Schumacher, and T. J. Galarneau Jr., 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 38483870, https://doi.org/10.1175/2011MWR3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hlywiak, J., and D. S. Nolan, 2021: The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci., 78, 9831000, https://doi.org/10.1175/JAS-D-20-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, F. P., J. C. Su, K. L. Hanavich, R. J. Smith, and F. P. Richards, 1987: Hurricane climatology for the Atlantic and Gulf Coasts of the United States. NOAA Tech. Rep. NWS38, Federal Emergency Management Agency, 195 pp.

  • Holland, G., 2008: A revised hurricane pressure–wind model. Mon. Wea. Rev., 136, 34323445, https://doi.org/10.1175/2008MWR2395.1.

  • Houston, S. H., W. A. Shaffer, M. D. Powell, and J. Chen, 1999: Comparisons of HRD and SLOSH surface wind fields in hurricanes: Implications for storm surge modeling. Wea. Forecasting, 14, 671686, https://doi.org/10.1175/1520-0434(1999)014<0671:COHASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., Q. Chen, and S. K. Kimball, 2012: Consistency in hurricane surface wind forecasting: An improved parametric model. Nat. Hazards, 61, 10291050, https://doi.org/10.1007/s11069-011-9960-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishtawal, C. M., D. Niyogi, A. Kumar, M. L. Bozeman, and O. Kellner, 2012: Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Nat. Hazards, 63, 15271542, https://doi.org/10.1007/s11069-011-0015-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935, https://doi.org/10.1175/2008JCLI2162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., S. G. Bowen, R. Pielke Jr., and M. Bell, 2018: Continental U.S. hurricane landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteor. Soc., 99, 13591376, https://doi.org/10.1175/BAMS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., M. M. Bell, S. G. Bowen, E. J. Gibney, K. R. Knapp, and C. J. Schreck III, 2020: Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Amer. Meteor. Soc., 101, E830E846, https://doi.org/10.1175/BAMS-D-19-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruk, M. C., E. J. Gibney, D. H. Levinson, and M. Squires, 2010: A climatology of inland winds from tropical cyclones for the eastern United States. J. Appl. Meteor. Climatol., 49, 15381547, https://doi.org/10.1175/2010JAMC2389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and P. Chakraborty, 2020: Slower decay of landfalling hurricanes in a warming world. Nature, 587, 230234, https://doi.org/10.1038/s41586-020-2867-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., and E. Uhlhorn, 2020: Managing inland hurricane wind risk: Thinking beyond the coast. AIR Currents, https://www.air-worldwide.com/publications/air-currents/2020/managing-inland-hurricane-wind-risk-thinking-beyond-the-coast/.

  • Malkin, W., 1959: Filling and intensity changes in hurricanes on land. National Hurricane Research Project Rep. 34, 18 pp.

  • Nair, U. S., and et al. , 2019: Influence of land cover and soil moisture based brown ocean effect on an extreme rainfall event from a Louisiana Gulf Coast tropical system. Sci. Rep., 9, 17136, https://doi.org/10.1038/s41598-019-53031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434, 10051008, https://doi.org/10.1038/nature03454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwerdt, R. W., F. P. Ho, and R. R. Watkins, 1979: Meteorological criteria for standard project hurricane and probable maximum hurricane wind fields, Gulf and East Coasts of the United States. NOAA Tech. Rep. NWS 23, 317 pp.

  • Simpson, R. H., 1974: The hurricane disaster-potential scale. Weatherwise, 27, 169186, https://doi.org/10.1080/00431672.1974.9931702.

  • Tan, C., and W. Fang, 2018: Mapping the wind hazard of global tropical cyclones with parametric wind field models by considering the effects of local factors. Int. J. Disaster Risk Sci., 9, 8699, https://doi.org/10.1007/s13753-018-0161-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., J. P. Kossin, S. J. Camargo, and C. Li, 2019: Past and future hurricane intensity change along the U.S. East Coast. Sci. Rep., 9, 7795, https://doi.org/10.1038/s41598-019-44252-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truchelut, R. E., and E. M. Staehling, 2017: An energetic perspective on United States tropical cyclone landfall droughts. Geophys. Res. Lett., 44, 12 01312 019, https://doi.org/10.1002/2017GL076071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., M. A. Bender, and Y. Kurihara, 1984: A simulation study of the landfall of tropical cyclones. Mon. Wea. Rev., 112, 124136, https://doi.org/10.1175/1520-0493(1984)112<0124:ASSOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., 2005: Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. Appl. Meteor., 44, 18071826, https://doi.org/10.1175/JAM2310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., S. Bao, L. J. Pietrafesa, K. Foley, and M. Fuentes, 2006: A real-time hurricane surface wind forecasting model: Formulation and verification. Mon. Wea. Rev., 134, 13551370, https://doi.org/10.1175/MWR3126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, A. R., and J. H. Jiang, 2014: Dependence of U.S. hurricane economic loss on maximum wind speed and storm size. Environ. Res. Lett., 9, 064019, https://doi.org/10.1088/1748-9326/9/6/064019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. J., and J. M. Collins, 2021: Recent rebounding of the post-landfall hurricane wind decay period over the continental United States. Geophys. Res. Lett., 48, e2020GL092072, https://doi.org/10.1029/2020GL092072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. J., Y. Hu, and J. M. Collins, 2020: Estimating road network accessibility during a hurricane evacuation: A case study of Hurricane Irma in Florida. Transp. Res., 83D, 102334, https://doi.org/10.1016/j.trd.2020.102334.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 127 127 28
Full Text Views 48 48 22
PDF Downloads 59 59 25

Spatial Variations of North Atlantic Landfalling Tropical Cyclone Wind Speed Decay over the Continental United States

View More View Less
  • 1 a School of Geosciences, University of South Florida, Tampa, Florida
  • | 2 b Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Understanding tropical cyclone wind speed decay during the postlandfall stage is critical for inland hazard preparation. This paper examines the spatial variation of wind speed decay of tropical cyclones over the continental United States. We find that tropical cyclones making landfall over the Gulf Coast decay faster within the first 24 h after landfall than those making landfall over the Atlantic East Coast. The variation of the decay rate over the Gulf Coast remains larger than that over the Atlantic East Coast for tropical cyclones that had made landfall more than 24 h prior. Besides an average weaker tropical cyclone landfall intensity, the near-parallel trajectory and the proximity of storms to the coastline also help to explain the slower postlandfall wind speed decay for Atlantic East Coast landfalling tropical cyclones. Tropical cyclones crossing the Florida Peninsula only slowly weaken after landfall, with an average of less than 20% postlandfall wind speed drop while transiting the state. The existence of these spatial variations also brings into question the utility of a uniform wind decay model. While weak intensity decay over the Florida Peninsula is well estimated by the uniform wind decay model, the error from the uniform wind decay model increases with tropical cyclones making direct landfall more parallel to the Atlantic East Coast. The underestimation of inland wind speed by the uniform wind decay model found over the western Gulf Coast brings attention to the role of land–air interactions in the decay of inland tropical cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi-Jie Zhu, yijiezhu@usf.edu

Abstract

Understanding tropical cyclone wind speed decay during the postlandfall stage is critical for inland hazard preparation. This paper examines the spatial variation of wind speed decay of tropical cyclones over the continental United States. We find that tropical cyclones making landfall over the Gulf Coast decay faster within the first 24 h after landfall than those making landfall over the Atlantic East Coast. The variation of the decay rate over the Gulf Coast remains larger than that over the Atlantic East Coast for tropical cyclones that had made landfall more than 24 h prior. Besides an average weaker tropical cyclone landfall intensity, the near-parallel trajectory and the proximity of storms to the coastline also help to explain the slower postlandfall wind speed decay for Atlantic East Coast landfalling tropical cyclones. Tropical cyclones crossing the Florida Peninsula only slowly weaken after landfall, with an average of less than 20% postlandfall wind speed drop while transiting the state. The existence of these spatial variations also brings into question the utility of a uniform wind decay model. While weak intensity decay over the Florida Peninsula is well estimated by the uniform wind decay model, the error from the uniform wind decay model increases with tropical cyclones making direct landfall more parallel to the Atlantic East Coast. The underestimation of inland wind speed by the uniform wind decay model found over the western Gulf Coast brings attention to the role of land–air interactions in the decay of inland tropical cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi-Jie Zhu, yijiezhu@usf.edu
Save