• Ahiablame, L., A. Y. Sheshukov, V. Rahmani, and D. Moriasi, 2017: Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River basin. J. Hydrol., 551, 188202, https://doi.org/10.1016/j.jhydrol.2017.05.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmad, I., D. Tang, T. F. Wang, M. Wang, and B. Wagan, 2015: Precipitation trends over time using Mann–Kendall and Spearman’s rho tests in Swat River basin, Pakistan. Adv. Meteor., 2015, 115, https://doi.org/10.1155/2015/431860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572, https://doi.org/10.1038/358570a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashraf, M., and K. Habib-ur-Rehman, 1999: Interactive effects of nitrate and long-term waterlogging on growth, water relations, and gaseous exchange properties of maize (Zea mays L.). Plant Sci., 144, 3543, https://doi.org/10.1016/S0168-9452(99)00055-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barandiaran, D., S. Y. Wang, and K. Hilburn, 2013: Observed trends in the Great Plains low-level jet and associated precipitation changes in relation to recent droughts. Geophys. Res. Lett., 40, 62476251, https://doi.org/10.1002/2013GL058296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., and Coauthors, 2019: North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 53, 68356875, https://doi.org/10.1007/s00382-019-04958-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnhart, T. B., N. P. Molotch, B. Livneh, A. A. Harpold, J. F. Knowles, and D. Schneider, 2016: Snowmelt rate dictates streamflow. Geophys. Res. Lett., 43, 80068016, https://doi.org/10.1002/2016GL069690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, M. A., C. E. Graves, and J. T. Moore, 2005: A climatology of snow-to-liquid ratio for the contiguous United States. Wea. Forecasting, 20, 729744, https://doi.org/10.1175/WAF856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and D. P. Lettenmaier, 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104, 19 59919 610, https://doi.org/10.1029/1999JD900337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J., K. Christian, and J. B. Basara, 2015: Drought and pluvial dipole events within the Great Plains of the United States. J. Appl. Meteor. Climatol., 54, 18861898, https://doi.org/10.1175/JAMC-D-15-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., E. K. Vizy, Z. S. Launer, and C. M. Patricola, 2008: Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Climate, 21, 63216340, https://doi.org/10.1175/2008JCLI2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, M. K. Doggett, and J. I. Smith, 2007: Observer bias in daily precipitation measurements at U.S. Cooperative Network stations. Bull. Amer. Meteor. Soc., 88, 899912, https://doi.org/10.1175/BAMS-88-6-899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. S., 2001: Flash flood forecast and detection methods. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 481–525.

    • Crossref
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental United States. J. Appl. Meteor. Climatol., 48, 20862099, https://doi.org/10.1175/2009JAMC2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doubler, D. L., J. A. Winkler, X. Bian, C. K. Walters, and S. Zhong, 2015: An NARR-derived climatology of southerly and northerly low-level jets over North America and coastal environs. J. Appl. Meteor. Climatol., 54, 15961619, https://doi.org/10.1175/JAMC-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downton, M. W., J. Z. B. Miller, and R. A. Pielke Jr., 2005: Reanalysis of US National Weather Service flood loss database. Nat. Hazards Rev., 6, 1322, https://doi.org/10.1061/(ASCE)1527-6988(2005)6:1(13).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 2017: Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment, D. J. Wuebbles et al., Eds., Vol. I, U.S. Global Change Research Program, 207–230, https://doi.org/10.7930/J0H993CC.

    • Crossref
    • Export Citation
  • Ettema, R., and L. Zabilansky, 2004: Ice influences on channel stability: Insights from Missouri’s fort peck reach. J. Hydraul. Eng, 130, 279292, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(279).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L.-Y. Leung, S. Hagos, R. A. Houze Jr., C. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central U.S. rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res., 108, 8385, https://doi.org/10.1029/2001JD001515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P. X., J. B. Basara, and X. Xiao, 2017: Long-term analysis of the asynchronicity between temperature and precipitation maxima in the United States Great Plains. Int. J. Climatol., 37, 39193933, https://doi.org/10.1002/joc.4966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P. X., J. B. Basara, J. Furtado, and X. Xiao, 2018: Primary atmospheric drivers of pluvial years in the United States Great Plains. J. Hydrometeor., 19, 643658, https://doi.org/10.1175/JHM-D-17-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P. X., and Coauthors, 2020: A hydrometeorological assessment of the historic 2019 flood of Nebraska, Iowa, and South Dakota. Bull. Amer. Meteor. Soc., 101, E817E829, https://doi.org/10.1175/BAMS-D-19-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, https://doi.org/10.1029/98GL51099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freudiger, D., I. Kohn, K. Stahl, and M. Weiler, 2014: Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. Hydrol. Earth Syst. Sci., 18, 26952709, https://doi.org/10.5194/hess-18-2695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, A. Drumond, R. Castillo, and R. Trigo, 2013: Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys. Res. Lett., 40, 14431450, https://doi.org/10.1002/grl.50338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, https://doi.org/10.1175/JHM-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howarth, M. E., D. C. Thorncroft, and L. F. Bosart, 2019: Changes in extreme precipitation in the northeast United States: 1979–2014. J. Hydrometeor., 20, 673689, https://doi.org/10.1175/JHM-D-18-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, E., D. J. Wuebbles, K. E. Kunkel, S. C. Olsen, and A. Goodman, 2014: Observational- and model-based trends and projections of extreme precipitation over the contiguous United States. Earth’s Future, 2, 99113, https://doi.org/10.1002/2013EF000185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., J. M. Melilo, and T. C. Peterson, Eds., 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 188 pp., http://downloads.globalchange.gov/usimpacts/pdfs/climate-impacts-report.pdf.

  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin, 202 pp.

  • Kozdrój, J., and J. D. van Elsas, 2000: Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol. Biochem., 32, 14051417, https://doi.org/10.1016/S0038-0717(00)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: North American trends in extreme precipitation. Nat. Hazards, 29, 291305, https://doi.org/10.1023/A:1023694115864.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., and T. T. Warner, 1991a: A synoptic climatology of the elevated mixed-layer inversion over the southern Great Plains in spring. Part I: Structure, dynamics, and seasonal evolution. Wea. Forecasting, 6, 181197, https://doi.org/10.1175/1520-0434(1991)006<0181:ASCOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., and T. T. Warner, 1991b: A synoptic climatology of the elevated mixed-layer inversion over the southern Great Plains in spring. Part II: The life cycle of the lid. Wea. Forecasting, 6, 198213, https://doi.org/10.1175/1520-0434(1991)006<0198:ASCOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2015: The changing nature of flooding across the central United States. Nat. Climate Change, 5, 250254, https://doi.org/10.1038/nclimate2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Maurer, E. P., and D. P. Lettenmaier, 2004: Potential effects of long-lead hydrologic predictability on Missouri River main-stem reservoirs. J. Climate, 17, 174186, https://doi.org/10.1175/1520-0442(2004)017<0174:PEOLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and L. E. Hay, 2007: Rain-on-snow events in the western United States. Bull. Amer. Meteor. Soc., 88, 319328, https://doi.org/10.1175/BAMS-88-3-319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099, https://doi.org/10.1175/2011JHM1312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1996: Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J. Climate, 9, 15311545, https://doi.org/10.1175/1520-0442(1996)009<1531:LSAMTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, https://doi.org/10.1175/2010JCLI3515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., D. Keyser, and L. F. Bosart, 2019: Linkages between extreme precipitation events in the central and eastern United States and Rossby wave breaking. Mon. Wea. Rev., 147, 33273349, https://doi.org/10.1175/MWR-D-19-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Najibi, N., N. Devineni, and M. Lu, 2017: Hydroclimate drivers and atmospheric teleconnections of long duration floods: An application to large reservoirs in the Missouri River basin. Adv. Water Resour., 100, 153167, https://doi.org/10.1016/j.advwatres.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2020: Climate at a glance. NOAA, accessed 5 October 2020, https://www.ncdc.noaa.gov/cag/.

  • Niu, G.-Y., and Z.-L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937952, https://doi.org/10.1175/JHM538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noguchi, S., N. Abdul Rahim, Y. Zulkifli, M. Tani, and T. Sammori, 1997: Rainfall–runoff responses and roles of soil moisture variations to the response in tropical rain forest, Bukit Tarek, Malaysia. J. For. Res., 2, 125132, https://doi.org/10.1007/BF02348209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pei, L., N. Moore, S. Zhong, A. D. Kendall, Z. Gao, and D. W. Hyndman, 2016: Effects of irrigation on summer precipitation over the United States. J. Climate, 29, 35413558, https://doi.org/10.1175/JCLI-D-15-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. A. Howe, and K. E. Kunkel, 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, https://doi.org/10.1002/joc.1696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., Z. Pan, R. B. Herrmann, and Y. Hong, 2014: Hydrological variability and uncertainty of lower Missouri River basin under changing climate. J. Amer. Water Resour. Assoc., 50, 246260, https://doi.org/10.1111/jawr.12126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, B. Z., and L. F. Bosart, 2018: Elevated mixed layers and associated severe thunderstorm environments in South and North America. Mon. Wea. Rev., 146, 328, https://doi.org/10.1175/MWR-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and J. Bloomfield, 2002: Increased crop damage in the US from excess precipitation under climate change. Global Environ. Change, 12, 197202, https://doi.org/10.1016/S0959-3780(02)00008-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozalis, S., E. Morin, Y. Yair, and C. Price, 2010: Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol., 394, 245255, https://doi.org/10.1016/j.jhydrol.2010.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm-season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830, https://doi.org/10.1175/JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USDA, 2019: Farmers prevented from planting crops on more than 19 million acres. Farm Service Agency, accessed 30 June 2020, https://www.fsa.usda.gov/news-room/news-releases/2019/report-farmers-prevented-from-planting-crops-on-more-than-19-million-acres.

  • U.S. Department of the Interior Bureau of Reclamation, 2016: Missouri River basin. Reclamation: Managing water in the West, Bureau of Reclamation Rep., 6-1–6-25, https://www.usbr.gov/climate/secure/docs/2016secure/2016SECUREReport-chapter6.pdf.

  • USGS and NOAA, 1972: The Black Hills–Rapid City flood of June 9–10, 1972: A description of the storm and flood. Geological Survey Professional Paper 877, 58 pp., https://pubs.usgs.gov/pp/0877/report.pdf.

  • USGS and NOAA, 1977: Floods in Kansas City, Missouri and Kansas, September 12–13, 1977. Geological Survey Professional Paper 1169, 56 pp., https://pubs.usgs.gov/pp/1169/report.pdf.

  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S., S. Baxter, and K. Harnos, 2016: Regional changes in the interannual variability of warm season precipitation. J. Climate, 29, 51575173, https://doi.org/10.1175/JCLI-D-14-00803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, R. R., 2001: Fundamentals of Modern Statistical Methods. Springer-Verlag, 258 pp.

    • Crossref
    • Export Citation
  • Wimhurst, J. J., and J. S. Greene, 2020: The influence of climate change on low-level jet characteristics over the south-central plains as simulated by CMIP5 models. Int. J. Climatol., 40, 60206038, https://doi.org/10.1002/joc.6563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, E. K., C. A. Woodhouse, G. J. McCabe, G. T. Pederson, and J.-M. St.-Jacques, 2018: Hydroclimatology of the Missouri River basin. J. Hydrol., 19, 161182, https://doi.org/10.1175/JHM-D-17-0155.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, Y., J. Wan, and G. J. D. Hewings, 2013: Flooding and the Midwest economy: Assessing the Midwest floods of 1993 and 2008. GeoJournal, 78, 245258, https://doi.org/10.1007/s10708-011-9415-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., B. K. Wylie, L. L. Tieszen, and B. C. Reed, 1998: An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. northern and central Great Plains. Remote Sens. Environ., 65, 2537, https://doi.org/10.1016/S0034-4257(98)00012-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, L. Pei, X. Bian, and W. E. Heilman, 2016: Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States. Environ. Res. Lett., 11, 044003, https://doi.org/10.1088/1748-9326/11/4/044003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. Black, 2017: A dynamical and statistical characterization of U.S. extreme precipitation events and their associated large-scale meteorological patterns. J. Climate, 30, 13071326, https://doi.org/10.1175/JCLI-D-15-0910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 395 14 0
Full Text Views 319 197 23
PDF Downloads 274 131 17

Spatiotemporal Analysis of Extreme Precipitation in the Missouri River Basin from 1950 to 2019

Paul FlanaganaU.S. Department of Agriculture Agricultural Research Service, El Reno, Oklahoma

Search for other papers by Paul Flanagan in
Current site
Google Scholar
PubMed
Close
and
Rezaul MahmoodbHigh Plains Regional Climate Center, University of Nebraska–Lincoln, Lincoln, Nebraska
cSchool of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Rezaul Mahmood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme precipitation events are challenging to local and regional stakeholders across the United States. The Missouri River basin (MoRB), covering an area over 1.29 million km2, is prone to extreme precipitation events. These events are exacerbated by the complex terrain in the west and the numerous weather and climate features that impact the region on a seasonal and annual basis (low-level jets, mesoscale convective systems, extreme cold air intrusions, etc.). Without an in-depth analysis of extreme precipitation in the MoRB, the evolving nature of extreme precipitation is not known. This situation warrants an analysis of extreme precipitation, especially relating to subannual variations when extreme precipitation is more impactful. To this end, data from 131 U.S. Historical Climatology Network (USHCN) stations were used to determine the nature of extreme precipitation from 1950 to 2019. Annual 99th-percentile events and annual station maximum precipitation events occur more frequently in the eastern MoRB than in the western MoRB, in line with the annual precipitation climatology. Results show that 99th-percentile events and annual station maximum precipitation events are becoming more frequent across the MoRB. Through analysis of 3-month extreme precipitation trends, areas in the eastern and southern MoRB are shown to have an increase in event frequency and intensity. Frequency shifts in the 99th-percentile events, however, have occurred across the entire region. The increasing frequency of extreme events in the western MoRB represents a significant change for the hydroclimate of the region. Overall, the results from this work show that MORB extreme precipitation has increased in frequency and intensity during the 1950–2019 period.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Flanagan, paul.flanagan2@usda.gov

Abstract

Extreme precipitation events are challenging to local and regional stakeholders across the United States. The Missouri River basin (MoRB), covering an area over 1.29 million km2, is prone to extreme precipitation events. These events are exacerbated by the complex terrain in the west and the numerous weather and climate features that impact the region on a seasonal and annual basis (low-level jets, mesoscale convective systems, extreme cold air intrusions, etc.). Without an in-depth analysis of extreme precipitation in the MoRB, the evolving nature of extreme precipitation is not known. This situation warrants an analysis of extreme precipitation, especially relating to subannual variations when extreme precipitation is more impactful. To this end, data from 131 U.S. Historical Climatology Network (USHCN) stations were used to determine the nature of extreme precipitation from 1950 to 2019. Annual 99th-percentile events and annual station maximum precipitation events occur more frequently in the eastern MoRB than in the western MoRB, in line with the annual precipitation climatology. Results show that 99th-percentile events and annual station maximum precipitation events are becoming more frequent across the MoRB. Through analysis of 3-month extreme precipitation trends, areas in the eastern and southern MoRB are shown to have an increase in event frequency and intensity. Frequency shifts in the 99th-percentile events, however, have occurred across the entire region. The increasing frequency of extreme events in the western MoRB represents a significant change for the hydroclimate of the region. Overall, the results from this work show that MORB extreme precipitation has increased in frequency and intensity during the 1950–2019 period.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Flanagan, paul.flanagan2@usda.gov
Save