• Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, B. K., 2007: Diurnal variation in precipitation over India during the summer monsoon season: Observed and model predicted. Mon. Wea. Rev., 135, 21552167, https://doi.org/10.1175/MWR3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, https://doi.org/10.1256/qj.03.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhate, J., and A. Kesarkar, 2019: Sensitivity of diurnal cycle of simulated rainfall to cumulus parameterization during Indian summer monsoon seasons. Climate Dyn., 53, 34313444, https://doi.org/10.1007/s00382-019-04716-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., C. Liu, and B. E. Mapes, 2017: Relationships between large precipitating systems and atmospheric factors at a grid scale. J. Atmos. Sci., 74, 531552, https://doi.org/10.1175/JAS-D-16-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., J. Fan, S. Hagos, W. I. Gustafson Jr., and L. K. Berg, 2015: Roles of wind shear at different vertical levels: Cloud system organization and properties. J. Geophys. Res., 120, 65516574, https://doi.org/10.1002/2015JD023253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., F. Giorgi, and K. Trenberth, 1999: Observed and model simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Gandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshpande, N. R., and B. N. Goswami, 2014: Modulation of the diurnal cycle of rainfall over India by intraseasonal variations of Indian summer monsoon. Int. J. Climatol., 34, 793807, https://doi.org/10.1002/joc.3719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134, 7991, https://doi.org/10.1175/MWR3055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., C. G. Biter, C. G. Mohr, and R. L. Vaughan, 1985: Objective analysis of constant altitude aircraft measurements in thunderstorm inflow regions. J. Atmos. Oceanic Technol., 2, 157170, https://doi.org/10.1175/1520-0426(1985)002<0157:OAOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125, 31573171, https://doi.org/10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guichard, F., and et al. , 2004: Modeling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, https://doi.org/10.1256/qj.03.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ECMWF ERA Rep. Series 27, 65 pp., https://doi.org/10.21957/tkic6g3wm.

    • Crossref
    • Export Citation
  • Hirose, M., and K. Nakamura, 2005: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM precipitation radar. J. Geophys. Res., 110, D05106, https://doi.org/10.1029/2004JD004815.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., K. L. Rasnyssen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, H. R., 1971: On the relationship between horizontal moisture convergence and convective cloud formation. J. Appl. Meteor., 10, 755762, https://doi.org/10.1175/1520-0450(1971)010<0755:OTRBHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and et al. , 2009: The impact of convergence zones on the initiation of deep convection: A case study from COPS. Atmos. Res., 93, 680694, https://doi.org/10.1016/j.atmosres.2009.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, C., A. Röpnack, G. C. Craig, and U. Schumann, 2008: Sensitivity of quantitative precipitation forecast to height dependent changes in humidity. Geophys. Res. Lett., 35, L09812, https://doi.org/10.1029/2008GL033657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and C. M. Kishtawal, 2000: A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon. Wea. Rev., 128, 462473, https://doi.org/10.1175/1520-0493(2000)128<0462:APCSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liberti, G. L., F. Chéruy, and M. Desbois, 2001: Land effect on the diurnal cycle of clouds over the TOGA COARE areas, as observed from GMS IR data. Mon. Wea. Rev., 129, 15001517, https://doi.org/10.1175/1520-0493(2001)129<1500:LEOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, https://doi.org/10.1175/2010JHM1320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., S. Shige, Y. N. Takayabu, and E. Zipser, 2015: Latent heating contribution from precipitation systems with different sizes, depths, and intensities in the tropics. J. Climate, 28, 186203, https://doi.org/10.1175/JCLI-D-14-00370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., 1990: The seasonal changes of wind fields in the global tropics. Geogr. Rev. Japan, 63, 156178, https://doi.org/10.4157/grj1984b.63.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., and A. Bhardwaj, 2019: Defining the northeast monsoon of India. Mon. Wea. Rev., 147, 791807, https://doi.org/10.1175/MWR-D-18-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narayana Rao, T., B. Radhakrishna, K. Nakamura, and N. Prabhakara Rao, 2009: Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki. Quart. J. Roy. Meteor. Soc., 135, 16301637, https://doi.org/10.1002/qj.432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and K. Musiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 14451463, https://doi.org/10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., T. N. Rao, D. N. Rao, N. P. Rao, K. Nakamura, and A. K. Sharma, 2009: Spatial and seasonal variability of raindrop size distributions in southeast India. J. Geophys. Res., 114, D04203, https://doi.org/10.1029/2008JD011226.

    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., I. Zawadzki, and F. Fabry, 2012: Predictability of precipitation from continental radar images. Part V: Growth and decay. J. Atmos. Sci., 69, 33363349, https://doi.org/10.1175/JAS-D-12-029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., F. Fabry, J. J. Braun, and T. Van Hove, 2015: Precipitable water from GPS over the continental United States: Diurnal cycle, intercomparisons with NARR, and link with convective initiation. J. Climate, 28, 25842599, https://doi.org/10.1175/JCLI-D-14-00366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., T. N. Rao, and K. Saikranthi, 2019: Spatial coherence of water vapor and rainfall over the Indian subcontinent during different monsoon seasons. J. Hydrometeor., 20, 4558, https://doi.org/10.1175/JHM-D-18-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raj, Y. E. A., 1998: A scheme for advance prediction of northeast monsoon rainfall of Tamil Nadu. Mausam, 49, 247254.

  • Rajeevan, M., C. K. Unnikrishnan, J. Bhate, K. N. Kumar, and P. P. Sreekala, 2012: Northeast monsoon over India: Variability and prediction. Meteor. Appl., 19, 226236, https://doi.org/10.1002/met.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, T. N., K. Saikranthi, B. Radhakrishna, and S. V. B. Rao, 2016: Differences in the climatological characteristics of precipitation between active and break spells of the Indian summer monsoon. J. Climate, 29, 77977814, https://doi.org/10.1175/JCLI-D-16-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1976: Southwest Monsoon. Meteor. Monogr., No. 1, India Meteorological Department, 367 pp.

  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132, 12011219, https://doi.org/10.1175/1520-0493(2004)132<1201:NCSATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. N. Ferreira, J. B. Halverson, D. L. Herdies, and M. A. F. Silva Dias, 2002: Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J. Geophys. Res., 107, 8040, https://doi.org/10.1029/2000JD000263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridout, J. A., 2002: Sensitivity of tropical Pacific convection to dry layers at mid- to upper levels: Simulation and parameterization tests. J. Atmos. Sci., 59, 33623381, https://doi.org/10.1175/1520-0469(2002)059<3362:SOTPCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze, 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahany, S., V. Venugopal, and R. S. Nanjundiah, 2010: Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. J. Geophys. Res., 115, D02103, https://doi.org/10.1029/2009JD012644.

    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., T. N. Rao, B. Radhakrishna, and S. V. B. Rao, 2014: Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR. J. Geophys. Res., 119, 84338449, https://doi.org/10.1002/2014JD021774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., B. Radhakrishna, S. K. Satheesh, and T. N. Rao, 2018: Spatial variation of different rain systems during El Niño and La Niña periods over India and adjoining ocean. Climate Dyn., 50, 36713685, https://doi.org/10.1007/s00382-017-3833-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., B. Radhakrishna, T. N. Rao, and S. K. Satheesh, 2019: Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission Precipitation Radar measurements. Atmos. Chem. Phys., 19, 10 42310 432, https://doi.org/10.5194/acp-19-10423-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, A., and S. Nigam, 2019: The northeast winter monsoon over the Indian subcontinent and Southeast Asia: Evolution, interannual variability, and model simulations. J. Climate, 32, 231249, https://doi.org/10.1175/JCLI-D-18-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Roy, S., and R. C. Balling, 2007: Diurnal variations in summer season precipitation in India. Int. J. Climatol., 27, 969976, https://doi.org/10.1002/joc.1458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., and C. D. Kummerow, 2016: Precipitation-top heights of heavy orographic rainfall in the Asian monsoon region. J. Atmos. Sci., 73, 30093024, https://doi.org/10.1175/JAS-D-15-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, N., and N. A. Sontakke, 1999: On the variability and prediction of the rainfall in the post-monsoon season over India. Int. J. Climatol., 19, 309339, https://doi.org/10.1002/(SICI)1097-0088(19990315)19:3<309::AID-JOC361>3.0.CO;2-#.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and R. A. Maddox, 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3, 189204, https://doi.org/10.1175/1520-0434(1988)003<0189:OMCACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunilkumar, K., T. N. Rao, and S. Satheeshkumar, 2016: Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in southeast India. Hydrol. Earth Syst. Sci., 20, 17191735, https://doi.org/10.5194/hess-20-1719-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., and V. Ramanathan, 2001: Scale dependence of the thermodynamic forcing of tropical monsoon clouds: Results from TRMM observations. J. Climate, 14, 15111524, https://doi.org/10.1175/1520-0442(2001)014<1511:SDOTTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, https://doi.org/10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099, https://doi.org/10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, https://doi.org/10.1175/2011JCLI4056.1.

  • Yang, G.-Y., and J. M. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., 2003: Moisture variability over the tropical western Pacific Ocean. J. Meteor. Soc. Japan, 81, 317337, https://doi.org/10.2151/jmsj.81.317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2008: On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the multiscale modeling framework. J. Geophys. Res., 113, D16105, https://doi.org/10.1029/2008JD009905.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 8
Full Text Views 68 68 4
PDF Downloads 58 58 5

Diurnal Variation of Rainfall in the Presence of Large- and Small-Scale Precipitating Systems during Different Monsoon Seasons over a Complex Terrain (Gadanki) Region

View More View Less
  • 1 a National Atmospheric Research Laboratory, Department of Space, Government of India, Gadanki, India
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The diurnal cycle of rainfall by large-scale systems (LSS) and small-scale systems (SSS) has been studied over a complex terrain region (Gadanki) in southern peninsular India using eight years of data from a network of 36 rain gauges. The diurnal cycle of accumulated rainfall by LSS and SSS shows peaks at 2200 and 1900 LT, respectively, during the southwest monsoon (SWM) and at 1900 and ~1700 LT during the northeast monsoon (NEM). Irrespective of the season and system size, the diurnal mode is the dominant mode of variation; it explains ~60% of variance during the SWM and ~54% during the NEM in LSS presence and explains ~43% of variance during the SWM and ~36% during the NEM in SSS presence. The correlation structure of rainfall is anisotropic with an axis ratio of ~1.5 for LSS and ~1.4 for SSS. Propagating systems are prevalent (80%–90% of times produce rain) in the presence of LSS during both seasons and play a dominant role in altering the diurnal cycle of rainfall over the Gadanki region. The conducive environment, like the presence of large relative humidity, updrafts in the lower and midtroposphere, and large lower and small midtropospheric shears, favors convective initiation and propagation of precipitating systems during LSS in SWM and NEM. The atmosphere favors convective initiation between 1800 and 2000 LT. The dry midtroposphere and weak upward motion in the midtroposphere inhibit mesoscale organization and form SSS during the SWM. During the NEM, a somewhat drier midtroposphere than in LSS and small wind shear in the lower troposphere (“L-shear”) inhibit the convective organization and form SSS between 1500 and 1800 LT.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Basivi Radhakrishna, rakibasivi@gmail.com

Abstract

The diurnal cycle of rainfall by large-scale systems (LSS) and small-scale systems (SSS) has been studied over a complex terrain region (Gadanki) in southern peninsular India using eight years of data from a network of 36 rain gauges. The diurnal cycle of accumulated rainfall by LSS and SSS shows peaks at 2200 and 1900 LT, respectively, during the southwest monsoon (SWM) and at 1900 and ~1700 LT during the northeast monsoon (NEM). Irrespective of the season and system size, the diurnal mode is the dominant mode of variation; it explains ~60% of variance during the SWM and ~54% during the NEM in LSS presence and explains ~43% of variance during the SWM and ~36% during the NEM in SSS presence. The correlation structure of rainfall is anisotropic with an axis ratio of ~1.5 for LSS and ~1.4 for SSS. Propagating systems are prevalent (80%–90% of times produce rain) in the presence of LSS during both seasons and play a dominant role in altering the diurnal cycle of rainfall over the Gadanki region. The conducive environment, like the presence of large relative humidity, updrafts in the lower and midtroposphere, and large lower and small midtropospheric shears, favors convective initiation and propagation of precipitating systems during LSS in SWM and NEM. The atmosphere favors convective initiation between 1800 and 2000 LT. The dry midtroposphere and weak upward motion in the midtroposphere inhibit mesoscale organization and form SSS during the SWM. During the NEM, a somewhat drier midtroposphere than in LSS and small wind shear in the lower troposphere (“L-shear”) inhibit the convective organization and form SSS between 1500 and 1800 LT.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Basivi Radhakrishna, rakibasivi@gmail.com
Save