• Arakawa, O., and A. Kitoh, 2012: Elevation dependency of summertime precipitation and its change by global warming over the Tibetan Plateau and the surroundings simulated by a 60-km-mesh atmospheric general circulation model. J. Meteor. Soc. Japan, 90A, 151165, https://doi.org/10.2151/jmsj.2012-A08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crhová, L., E. Holtanova, J. Kalvova, and A. Farda, 2018: Changes in air temperature means and interannual variability over Europe in simulations by ALADIN-Climate/CZ: Dependence on the size of the integration domain. Theor. Appl. Climatol., 131, 363376, https://doi.org/10.1007/s00704-016-1962-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fay, P. A., 2009: Precipitation variability and primary productivity in water-limited ecosystems: How plants ‘leverage’ precipitation to ‘finance’ growth. New Phytol., 181, 58, https://doi.org/10.1111/j.1469-8137.2008.02695.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fayiah, M., S. Dong, W. S. Khomera, A. S. Ur Rehman, M. Yang, and J. Xiao, 2020: Status and challenges of Qinghai–Tibet Plateau’s grasslands: An analysis of causes, mitigation measures, and way forward. Sustainability, 12, 1099, https://doi.org/10.3390/su12031099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forzieri, G., L. Feyen, A. Cescatti, and E. R. Vivoni, 2014: Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America. J. Geophys. Res. Biogeosci., 119, 19992017, https://doi.org/10.1002/2014JG002710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C. S., H. Wu, Z. Zhu, C. Song, B. Xue, H. Wu, Z. Ji, and L. Dong, 2021: Exploring the potential factors on the striking water level variation of the two largest semi-arid-region lakes in northeastern Asia. Catena, 198, 105037, https://doi.org/10.1016/j.catena.2020.105037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Q. Z., Y. F. Wan, H. M. Xu, Y. Li, W. Z. Jiangcun, and A. Borjigidai, 2010: Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int., 226, 143150, https://doi.org/10.1016/j.quaint.2009.10.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., and et al. , 1991: A 13,000-year climate record from western Tibet. Nature, 353, 742745, https://doi.org/10.1038/353742a0.

  • Gormsen, A. K., A. Hense, T. B. Toldam-Andersen, and P. Braun, 2005: Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark. Theor. Appl. Climatol., 82, 4150, https://doi.org/10.1007/s00704-005-0122-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heisler, J. L., and J. F. Weltzin, 2006: Variability matters: Towards a perspective on the influence of precipitation on terrestrial ecosystems. New Phytol., 172, 189192, https://doi.org/10.1111/j.1469-8137.2006.01876.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heisler-White, J. L., J. M. Blair, E. F. Kelly, K. Harmoney, and A. K. Knapp, 2009: Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biol., 15, 28942904, https://doi.org/10.1111/j.1365-2486.2009.01961.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Karl, T. R., R. W. Knight, and N. Plummer, 1995: Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217220, https://doi.org/10.1038/377217a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Liu, H. Y., and et al. , 2018: Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA, 115, 40514056, https://doi.org/10.1073/pnas.1700299114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L. H., and et al. , 2019: Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai–Tibet Plateau. Sci. Total Environ., 678, 2129, https://doi.org/10.1016/j.scitotenv.2019.04.399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. P., L. Wang, X. Y. Guo, and D. L. Chen, 2017: Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int. J. Climatol., 37, 12781284, https://doi.org/10.1002/joc.4978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., Z. Y. Yin, X. M. Shao, and N. S. Qin, 2006: Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res., 111, D19109, https://doi.org/10.1029/2005JD006915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., Z. G. Cheng, L. B. Yan, and Z. Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet. Change, 68, 164174, https://doi.org/10.1016/j.gloplacha.2009.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J. S., and et al. , 2017: Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet. Sci. Adv., 3, e1600762, https://doi.org/10.1126/sciadv.1600762.

    • Search Google Scholar
    • Export Citation
  • Pepin, N., and et al. , 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prevéy, J., and et al. , 2017: Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Global Change Biol., 23, 26602671, https://doi.org/10.1111/gcb.13619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. L. Liang, and X. F. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, https://doi.org/10.1007/s10584-009-9733-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sala, O. E., L. A. Gherardi, and D. P. C. Peters, 2015: Enhanced precipitation variability effects on water losses and ecosystem functioning: Differential response of arid and mesic regions. Climatic Change, 131, 213227, https://doi.org/10.1007/s10584-015-1389-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawa, T., 1968: Selection of variables in linear regression models. Econometrica, 36, 5363.

  • Sloat, L. L., J. S. Gerber, L. H. Samberg, W. K. Smith, M. Herrero, L. G. Ferreira, C. M. Godde, and P. C. West, 2018: Increasing importance of precipitation variability on global livestock grazing lands. Nat. Climate Change, 8, 214218, https://doi.org/10.1038/s41558-018-0081-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, E. E., F. Giorgi, and L. C. Sloan, 1999: Regional climate model simulation of precipitation in central Asia: Mean and interannual variability. J. Geophys. Res., 104, 65636582, https://doi.org/10.1029/98JD02501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F. L., Y. Wei, F. Wang, J. Guo, J. Zhang, Y. Wang, H. Guo, and S. Hu, 2019: Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau. Ecol. Evol., 9, 76287638, https://doi.org/10.1002/ece3.5312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., and G. A. Meehl, 2017: Extreme weather and climate events with ecological relevance: A review. Philos. Trans. Roy. Soc., 372B, 20160135, https://doi.org/10.1098/rstb.2016.0135.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. X. Wu, and Y. M. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. J., M. J. Zhang, B. L. Wang, M. P. Sun, and X. F. Li, 2013: Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int., 313–314, 110117, https://doi.org/10.1016/j.quaint.2013.03.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., C. Ottlé, S. Peng, I. A. Janssens, X. Lin, B. Poulter, C. Yue, and P. Ciais, 2014: The influence of local spring temperature variance on temperature sensitivity of spring phenology. Global Change Biol., 20, 14731480, https://doi.org/10.1111/gcb.12509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T. D., and et al. , 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiou, P., D. Dacunha-Castelle, S. Parey, and T. T. H. Hoang, 2009: Statistical representation of temperature mean and variability in Europe. Geophys. Res. Lett., 36, L04710, https://doi.org/10.1029/2008GL036836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q. L., S. C. Kang, E. Aguilar, and Y. P. Yan, 2008: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res., 113, D07101, https://doi.org/10.1029/2007JD009389.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., H. Ren, L. J. Miao, Y. D. Lei, and M. K. Duan, 2019: Simulation of daily precipitation from CMIP5 in the Qinghai–Tibet Plateau. SOLA, 15, 6874, https://doi.org/10.2151/sola.2019-014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. S., X. J. Shen, and B. L. Wang, 2015: Changes in precipitation extremes in southeastern Tibet, China. Quat. Int., 380–381, 4959, https://doi.org/10.1016/j.quaint.2015.02.009.

    • Search Google Scholar
    • Export Citation
  • Zhang, K. P., Y. Shi, X. Jing, J.-S. He, R. Sun, Y. Yang, A. Shade, and H. Chu, 2016: Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Front. Microbiol., 7, 1032, https://doi.org/10.3389/fmicb.2016.01032.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., T. Luo, H. Wei, Z. Deng, X. Li, R. Li, and Y. Tang, 2019: Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteor., 279, 107761, https://doi.org/10.1016/j.agrformet.2019.107761.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 293 293 20
Full Text Views 47 47 7
PDF Downloads 91 91 9

Beyond the Mean: Long-Term Variabilities in Precipitation and Temperature on the Qinghai–Tibetan Plateau

View More View Less
  • 1 a Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Long-term variabilities in daily precipitation and temperature are critical for assessing the impacts of climate change on ecosystems. We characterized intra- and interannual variabilities in daily precipitation and temperature obtained from 1960 to 2015 at 78 meteorological stations on the Qinghai–Tibetan Plateau. The results show the following. 1) the intra-annual variability of daily precipitation increases for 55 meteorological stations with a rate of 0.08 mm decade−1. In contrast, the intra-annual variability markedly decreases for daily mean, daytime mean, and nighttime mean temperatures with a rate of 0.09°, 0.07°, and 0.12°C decade−1, respectively, at 90% or more of stations. 2) Variabilities of daily precipitation and temperatures are very sensitive to high altitudes (>3500 m). The intra- and interannual variabilities of daily precipitation significantly decrease at 1.0 and 0.07 mm (1000 m)−1, respectively. However, variations of high altitudes increase the intra- and interannual variabilities of daily mean temperature at 1.0° and 0.2°C (1000 m)−1, respectively. Moreover, the interannual variability of nighttime mean temperature varies at 0.3°C (1000 m)−1, the fastest rate among three temperature indices. 3) A larger mean annual precipitation is accompanied by a higher intra- and interannual variability of daily precipitation on the Qinghai–Tibetan Plateau; however, a higher mean annual temperature leads to lower variabilities of daily temperatures. This study illustrates that long-term climatic variability is understudied in alpine ecosystems characterized by high climatic sensitivity. Precipitation and temperature variabilities should be characterized to improve predictions of vulnerable ecosystems responding to climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tong Guo, tongg@pku.edu.cn

Abstract

Long-term variabilities in daily precipitation and temperature are critical for assessing the impacts of climate change on ecosystems. We characterized intra- and interannual variabilities in daily precipitation and temperature obtained from 1960 to 2015 at 78 meteorological stations on the Qinghai–Tibetan Plateau. The results show the following. 1) the intra-annual variability of daily precipitation increases for 55 meteorological stations with a rate of 0.08 mm decade−1. In contrast, the intra-annual variability markedly decreases for daily mean, daytime mean, and nighttime mean temperatures with a rate of 0.09°, 0.07°, and 0.12°C decade−1, respectively, at 90% or more of stations. 2) Variabilities of daily precipitation and temperatures are very sensitive to high altitudes (>3500 m). The intra- and interannual variabilities of daily precipitation significantly decrease at 1.0 and 0.07 mm (1000 m)−1, respectively. However, variations of high altitudes increase the intra- and interannual variabilities of daily mean temperature at 1.0° and 0.2°C (1000 m)−1, respectively. Moreover, the interannual variability of nighttime mean temperature varies at 0.3°C (1000 m)−1, the fastest rate among three temperature indices. 3) A larger mean annual precipitation is accompanied by a higher intra- and interannual variability of daily precipitation on the Qinghai–Tibetan Plateau; however, a higher mean annual temperature leads to lower variabilities of daily temperatures. This study illustrates that long-term climatic variability is understudied in alpine ecosystems characterized by high climatic sensitivity. Precipitation and temperature variabilities should be characterized to improve predictions of vulnerable ecosystems responding to climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tong Guo, tongg@pku.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 766.96 KB)
Save