• Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, W., J. Wei, S. Ni, and Y. Shi, 2019: Micro-droplets sedimentation experimental study in low-frequency acoustic wave. Yingyong Jichu Yu Gongcheng Kexue Xuebao, 28, 247258.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., G. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475, https://doi.org/10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, https://doi.org/10.1175/2009JTECHA1258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J. W., J. Qiu, J. H. Wei, J. Z. Wang, and Z. F. Zhao, 2019: Characterizing low-frequency strong acoustic emission and propagation of the fluidic air-modulated speaker. J. Qinghai Univ., 37, 4955.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., and G. Zhang, 2009: Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra. J. Appl. Meteor. Climatol., 48, 406425, https://doi.org/10.1175/2008JAMC2026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracciolo, C., F. Prodi, A. Battaglia, and F. Porcu, 2006: Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atmos. Res., 80, 165186, https://doi.org/10.1016/j.atmosres.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caracciolo, C., F. Porcù, and F. Prodi, 2008: Precipitation classification at mid-latitudes in terms of drop size distribution parameters. Adv. Geosci., 16, 1117, https://doi.org/10.5194/adgeo-16-11-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Yang, and J. Pu, 2013: Statistical characteristics of raindrop size distribution in the meiyu season observed in Eastern China. J. Meteor. Soc. Japan, 91, 215227, https://doi.org/10.2151/jmsj.2013-208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and V. Chandrasekar, 2015: Estimation of light rainfall using Ku-band dual-polarization radar. IEEE Trans. Geosci. Remote Sens., 53, 51975208, https://doi.org/10.1109/TGRS.2015.2419212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González, I. A., T. L. Hoffmann, and J. A. Gallego, 2000a: Theory and calculation of sound induced particle interactions of viscous origin. Acta Acust. Acust., 86, 784797.

    • Search Google Scholar
    • Export Citation
  • González, I. A., T. L. Hoffmann, and J. A. Gallego, 2000b: Precise measurements of particle entrainment in a standing-wave acoustic field between 20 and 3500 Hz. J. Aerosol Sci., 31, 14611468, https://doi.org/10.1016/S0021-8502(00)00046-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(159).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jana, S., G. Rakshit, and A. Maitra, 2018: Aliasing effect due to convective rain in Doppler spectrum observed by micro rain radar at a tropical location. Adv. Space Res., 62, 24432453, https://doi.org/10.1016/j.asr.2018.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kačianauskas, R., A. Maknickas, and D. Vainorius, 2017: DEM analysis of acoustic wake agglomeration for mono-sized microparticles in the presence of gravitational effects. Granular Matter, 19, 48, https://doi.org/10.1007/s10035-017-0726-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirankumar, N. V. P., and P. K. Kunhikrishnan, 2013: Evaluation of performance of Micro Rain Radar over the tropical coastal station Thumba (8.5°N, 76.9°E). Atmos. Res., 134, 5663, https://doi.org/10.1016/j.atmosres.2013.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, 2006: Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region. J. Meteor. Soc. Japan, 84A, 195209, https://doi.org/10.2151/jmsj.84A.195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna, U. V. M., K. K. Reddy, B. K. Seela, R. Shirooka, P.-L. Lin, and C.-J. Pan, 2016: Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the western Pacific Ocean. Atmos. Res., 174–175, 4151, https://doi.org/10.1016/j.atmosres.2016.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., D. Moisseev, M. Leskinen, and W. A. Petersen, 2012: A climatology of disdrometer measurements of rainfall in Finland over five years with implications for global radar observations. J. Appl. Meteor. Climatol., 51, 392404, https://doi.org/10.1175/JAMC-D-11-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maknickas, A., D. Markauskas, and R. Kačianauskas, 2016: Discrete element simulating the hydrodynamic effects in acoustic agglomeration of micron-sized particles. Part. Sci. Technol., 34, 453460, https://doi.org/10.1080/02726351.2016.1156793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markauskas, D., R. Kačianauskas, and A. Maknickas, 2015: Numerical particle-based analysis of the effects responsible for acoustic particle agglomeration. Adv. Powder Technol., 26, 698704, https://doi.org/10.1016/j.apt.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and S. Li, 2014: Adhesive Particle Flow: A Discrete-Element Approach. Cambridge University Press, 355 pp.

  • Marzano, F. S., D. Cimini, and M. Montopoli, 2010: Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data. Atmos. Res., 97, 583600, https://doi.org/10.1016/j.atmosres.2010.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mednikov, E. P., 1965: Acoustic Coagulation and Precipitation of Aerosols. Consultants Bureau, 180 pp.

  • Michaelides, S., V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, and J. Lane, 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512533, https://doi.org/10.1016/j.atmosres.2009.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., and V. Chandrasekar, 2007: Examination of the μΛ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24, 847855, https://doi.org/10.1175/JTECH2010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalbandyan, O., 2011: The clouds microstructure and the rain stimulation by acoustic waves. Atmos. Climate Sci., 1, 8690, https://doi.org/10.4236/acs.2011.13009.

    • Search Google Scholar
    • Export Citation
  • Park, S. G., H. L. Kim, Y. W. Ham, and S. H. Jung, 2017: Comparative evaluation of the OTT PARSIVEL2 using a collocated two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 34, 20592082, https://doi.org/10.1175/JTECH-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, H. S., and W. Cawood, 1931: Phenomena in a sounding tube. Nature, 127, 667, https://doi.org/10.1038/127667a0.

  • Rosenfeld, D., 2002: Secondary seeding as a means of propagating seeding effects in space and time. J. Wea. Modif., 34, 3138.

  • Rosenfeld, D., X. Yu, and J. Dai, 2005: Satellite-retrieved microstructure of AgI seeding tracks in supercooled layer clouds. J. Appl. Meteor. Climatol., 44, 760767, https://doi.org/10.1175/JAM2225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, T., S. Das, and A. Maitra, 2015: Assessment of different raindrop size measuring techniques: Inter-comparison of Doppler radar, impact and optical disdrometer. Atmos. Res., 160, 1527, https://doi.org/10.1016/j.atmosres.2015.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., J. Wei, W. Bai, and G. Wang, 2020a: Numerical investigations of acoustic agglomeration of liquid droplet using a coupled CFD-DEM model. Adv. Powder Technol., 31, 23942411, https://doi.org/10.1016/j.apt.2020.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., J. Wei, J. Qiu, H. Chu, W. Bai, and G. Wang, 2020b: Numerical study of acoustic agglomeration process of droplet aerosol using a three-dimensional CFD-DEM coupled model. Powder Technol., 362, 3753, https://doi.org/10.1016/j.powtec.2019.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., and Coauthors, 2021: Investigation of vertical microphysical characteristics of precipitation under the action of low-frequency acoustic waves. Atmos. Res., 249, 105283, https://doi.org/10.1016/j.atmosres.2020.105283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreekanth, T. S., H. Varikoden, E. A. Resmi, and M. G. Kumar, 2019: Classification and seasonal distribution of rain types based on surface and radar observations over a tropical coastal station. Atmos. Res., 218, 9098, https://doi.org/10.1016/j.atmosres.2018.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, J., 1973: A three-dimensional model of cumulus cloud development. J. Atmos. Sci., 30, 414435, https://doi.org/10.1175/1520-0469(1973)030<0414:ATDMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suh, S. H., C. H. You, and D. I. Lee, 2016: Climatological characteristics of raindrop size distributions in Busan, Republic of Korea. Hydrol. Earth Syst. Sci., 20, 193207, https://doi.org/10.5194/hess-20-193-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., H. Xiao, C. Guo, and L. Feng, 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res., 135–136, 5975, https://doi.org/10.1016/j.atmosres.2013.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Atmos. Oceanic Technol., 40, 20832097, https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, https://doi.org/10.1175/2007MWR2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulaikova, T., A. Michtchenko, and S. Amirova, 2010: Acoustic Rains. Fizmatkniga Publishing House, 143 pp.

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., B. L. Fisher, and D. B. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 4356, https://doi.org/10.1175/2007JTECHA895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., J. Qiu, T. Li, Y. Huang, Z. Qiao, J. Cao, D. Zhong, and G. Wang, 2021: Cloud and precipitation interference by strong low-frequency sound wave. Sci. China Technol. Sci., 64, 261272, https://doi.org/10.1007/s11431-019-1564-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, L., K. Zhao, G. Zhang, S. Liu, and G. Chen, 2017: Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during mei-yu season in east China. J. Atmos. Oceanic Technol., 34, 10211037, https://doi.org/10.1175/JTECH-D-16-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiong, F. L., 2016: Study of fitting gamma raindrop size distribution. M.S. thesis, School of Atmospheric Physics, Nanjing University of Information Science and Technology, 91 pp.

  • Yang, J., B. J. Chen, and Y. Yin, 2011: Cloud Precipitation Physics. Meteorological Press, 364 pp.

  • You, C. H., M. Y. Kang, D. I. Lee, and H. Uyeda, 2014: Rainfall estimation by S-band polarimetric radar in Korea. Part I: Preprocessing and preliminary results. Meteor. Appl., 21, 975983, https://doi.org/10.1002/met.1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, C. H., D. I. Lee, M. Y. Kang, and H. J. Kim, 2016: Classification of rain types using drop size distributions and polarimetric radar: Case study of a 2014 flooding event in Korea. Atmos. Res., 181, 211219, https://doi.org/10.1016/j.atmosres.2016.06.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. Brandes, R. Meneghini, and T. Kozu, 2003: The shape slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119, https://doi.org/10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., L. Zhang, J. Wang, and Z. Chi, 2018a: A new model for the acoustic wake effect in aerosol acoustic agglomeration processes. Appl. Math. Model., 61, 124140, https://doi.org/10.1016/j.apm.2018.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., L. Zhang, J. Wang, Z. Chi, and E. Hu, 2018b: A new multiple-time-step three-dimensional discrete element modeling of aerosol acoustic agglomeration. Powder Technol., 323, 393402, https://doi.org/10.1016/j.powtec.2017.10.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., Z. Luo, M. Fang, M. Lu, J. Jiang, H. Chen, and M. He, 2017: Numerical calculation of particle movement in sound wave fields and experimental verification through high-speed photography. Appl. Energy, 185, 22452250, https://doi.org/10.1016/j.apenergy.2016.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 246 246 23
Full Text Views 46 46 3
PDF Downloads 71 71 3

Investigation of Precipitation Characteristics under the Action of Acoustic Waves in the Source Region of the Yellow River

View More View Less
  • 1 a State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
  • | 2 b State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
  • | 3 c School of Hydraulic and Electric Engineering, Qinghai University, Xining, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Acoustic agglomerations have increasingly attracted widespread attention as a cost-effective and environmentally friendly approach for fog removal and weather modification. In this study, research on precipitation interference and the agglomeration performance of droplet aerosols under large-scale acoustic waves was presented. In total, 49 field experiments in the source region of the Yellow River in the summer of 2019 were performed to reveal the influences of acoustic waves on precipitation, such as the radar reflectivity factor Z, rain rate R, and raindrop size distribution (DSD). A monitoring system that consisted of rain gauges and raindrop spectrometers was employed to monitor near-ground rainfall within a 5-km radius of the field site. The ground-based observations showed that acoustic waves could significantly affect the rainfall distribution and microstructure of precipitation particles. The average values of rainfall increased by 18.98%, 10.61%, and 8.74% within 2, 3, and 5 km, respectively, of the operation center with acoustic application. The changing trend of microphysical parameters of precipitation was roughly in line with variation of acoustic waves for stratiform cloud. Moreover, there was a good quadratic relationship between the spectral parameters λ and μ. Raindrop kinetic energy eK and the radar reflectivity factor Z both exhibited a power function relationship with R.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiahua Wei, weijiahua@tsinghua.edu.cn

Abstract

Acoustic agglomerations have increasingly attracted widespread attention as a cost-effective and environmentally friendly approach for fog removal and weather modification. In this study, research on precipitation interference and the agglomeration performance of droplet aerosols under large-scale acoustic waves was presented. In total, 49 field experiments in the source region of the Yellow River in the summer of 2019 were performed to reveal the influences of acoustic waves on precipitation, such as the radar reflectivity factor Z, rain rate R, and raindrop size distribution (DSD). A monitoring system that consisted of rain gauges and raindrop spectrometers was employed to monitor near-ground rainfall within a 5-km radius of the field site. The ground-based observations showed that acoustic waves could significantly affect the rainfall distribution and microstructure of precipitation particles. The average values of rainfall increased by 18.98%, 10.61%, and 8.74% within 2, 3, and 5 km, respectively, of the operation center with acoustic application. The changing trend of microphysical parameters of precipitation was roughly in line with variation of acoustic waves for stratiform cloud. Moreover, there was a good quadratic relationship between the spectral parameters λ and μ. Raindrop kinetic energy eK and the radar reflectivity factor Z both exhibited a power function relationship with R.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiahua Wei, weijiahua@tsinghua.edu.cn

Supplementary Materials

    • Supplemental Materials (ZIP 85.64 KB)
Save