• Anyah, R., and F. Semazzi, 2004: Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperatures. Theor. Appl. Climatol., 79, 5569, https://doi.org/10.1007/s00704-004-0057-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J., and S. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, O. R., K. Alapaty, J. A. Herwehe, M. S. Mallard, T. L. Otte, R. C. Gilliam, and C. G. Nolte, 2014: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteor. Climatol., 53, 2033, https://doi.org/10.1175/JAMC-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burakowski, E. A., S. V. Ollinger, G. B. Bonan, C. P. Wake, J. E. Dibb, and D. Y. Hollinger, 2016: Evaluating the climate effects of reforestation in New England using a Weather Research and Forecasting (WRF) Model multiphysics ensemble. J. Climate, 29, 51415156, https://doi.org/10.1175/JCLI-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 7 July 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and et al. , 2017: Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment, D. J. Wuebbles et al., Eds., Vol. I, U.S. Global Change Research Program, 207–230.

  • Frich, P., L. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J.S. Fu, J.B. Drake, Y. Liu, and J.F. Lamarque, 2012: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett., 7, 044025, https://doi.org/10.1088/1748-9326/7/4/044025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilbert, J., A. Betts, D. Rizzo, B. Beckage, and A. Bomblies, 2015: Characterization of increased persistence and intensity of precipitation in the northeastern United States. Geophys. Res. Lett., 42, 18881893, https://doi.org/10.1002/2015GL063124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., and W. Peltier, 2012: Dynamical downscaling over the Great Lakes Basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming. J. Climate, 25, 77237742, https://doi.org/10.1175/JCLI-D-11-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanrahan, J., S. Kravtsov, and P. Roebber, 2010: Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett., 37, L01701, https://doi.org/10.1029/2009GL041707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanrahan, J., A. Maynard, S. Murphy, C. Zercher, and A. Fitzpatrick, 2017: Examining the climatology of shortwave radiation in the northeastern United States. J. Appl. Meteor. Climatol., 56, 28692881, https://doi.org/10.1175/JAMC-D-16-0420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., J. VanDorn, T. Croley, N. Schlegal, and D. Wuebbles, 2010: Regional climate change projections for Chicago and the US Great Lakes. J. Great Lakes Res., 36, 721, https://doi.org/10.1016/j.jglr.2010.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, K. Wolter, and L. Cheng, 2016: Characterizing recent trends in U.S. heavy precipitation. J. Climate, 29, 23132332, https://doi.org/10.1175/JCLI-D-15-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Huang, H., J. Winter, E. Osterberg, R. Horton, and B. Beckage, 2017: Total and extreme precipitation changes over the northeastern United States. J. Hydrometeor., 18, 17831798, https://doi.org/10.1175/JHM-D-16-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., J. Winter, E. Osterberg, J. Hanrahan, C. Bruyère, P. Clemins, and B. Beckage, 2020: Simulating precipitation and temperature in the Lake Champlain basin using a regional climate model: Limitations and uncertainties. Climate Dyn., 54, 6984, https://doi.org/10.1007/s00382-019-04987-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, T., A. Clites, K. Campbell, and A. Gronewold, 2015: Development and application of a North American Great Lakes hydrometeorological database—Part I: Precipitation, evaporation, runoff, and air temperature. J. Great Lakes Res., 41, 6577, https://doi.org/10.1016/j.jglr.2014.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF model. Adv. Meteor., 2010, 167436, https://doi.org/10.1155/2010/167436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komurcu, M., K. A. Emanuel, M. Huber, and R. P. Acosta, 2018: High-resolution climate projections for the northeastern United States using dynamical downscaling at convection-permitting scales. Earth Space Sci., 5, 801826, https://doi.org/10.1029/2018EA000426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M., C. Nolte, T. Spero, O. Bullock, K. Alapaty, J. Herwehe, J. Gula, and J. Bowden, 2015: Technical challenges and solutions in representing lakes when using WRF in downscaling applications. Geosci. Model Dev., 8, 10851096, https://doi.org/10.5194/gmd-8-1085-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, https://doi.org/10.1175/JCLI-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. M., and et al. , 2015: Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett., 42, 10 77310 781, https://doi.org/10.1002/2015GL066235.

    • Search Google Scholar
    • Export Citation
  • Schneider, P., and S. Hook, 2010: Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett., 37, L22405, https://doi.org/10.1029/2010GL045059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R., and F. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, https://doi.org/10.1016/S0380-1330(96)71006-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., et al. , 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Spero, T., C. Nolte, J. Bowden, M. Mallard, and J. Herwehe, 2016: The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF Model. J. Climate, 29, 839853, https://doi.org/10.1175/JCLI-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trail, M., A.P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A.G. Russell, 2013: Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality. Geosci. Model Dev., 6, 14291445, https://doi.org/10.5194/gmd-6-1429-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Climate, 25, 13181329, https://doi.org/10.1175/2011JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and et al. , 2017: User’s guide for the Advanced Research WRF (ARW) Modeling System version 3.9. UCAR, 443 pp., https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/user_guide_V3.9/ARWUsersGuideV3.9.pdf.

  • Wright, D., D. Posselt, and A. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Mon. Wea. Rev., 141, 670689, https://doi.org/10.1175/MWR-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., J. Jin, S. Wang, and M. Ek, 2012: Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. J. Geophys. Res., 117, D09102, https://doi.org/10.1029/2011JD016979.

    • Search Google Scholar
    • Export Citation
  • Zhong, Y., M. Notaro, S. Vavrus, and M. Foster, 2016: Recent accelerated warming of the Laurentian Great Lakes: Physical drivers. Limnol. Oceanogr., 61, 17621786, https://doi.org/10.1002/lno.10331.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 22
Full Text Views 55 55 17
PDF Downloads 66 66 21

Examining the Impacts of Great Lakes Temperature Perturbations on Simulated Precipitation in the Northeastern United States

View More View Less
  • 1 a Department of Atmospheric Sciences, Northern Vermont University–Lyndon, Lyndonville, Vermont
  • | 2 b State University of New York College of Environmental Science and Forestry, Syracuse, New York
  • | 3 c Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • | 4 d Department of Geography, Dartmouth College, Hanover, New Hampshire
  • | 5 e Vermont EPSCoR Program, University of Vermont, Burlington, Vermont
  • | 6 f Department of Computer Science, University of Vermont, Burlington, Vermont
  • | 7 g Department of Plant Biology, University of Vermont, Burlington, Vermont
  • | 8 h National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Most inland water bodies are not resolved by general circulation models, requiring that lake surface temperatures be estimated. Given the large spatial and temporal variability of the surface temperatures of the North American Great Lakes, such estimations can introduce errors when used as lower boundary conditions for dynamical downscaling. Lake surface temperatures (LSTs) influence moisture and heat fluxes, thus impacting precipitation within the immediate region and potentially in regions downwind of the lakes. For this study, the Advanced Research version of the Weather Research and Forecasting Model (WRF-ARW) was used to simulate precipitation over the six New England states during a 5-yr historical period. The model simulation was repeated with perturbed LSTs, ranging from 10°C below to 10°C above baseline values obtained from reanalysis data, to determine whether the inclusion of erroneous LST values has an impact on simulated precipitation and synoptic-scale features. Results show that simulated precipitation in New England is statistically correlated with LST perturbations, but this region falls on a wet–dry line of a larger bimodal distribution. Wetter conditions occur to the north and drier conditions occur to the south with increasing LSTs, particularly during the warm season. The precipitation differences coincide with large-scale anomalous temperature, pressure, and moisture patterns. Care must therefore be taken to ensure reasonably accurate Great Lakes surface temperatures when simulating precipitation, especially in southeastern Canada, Maine, and the mid-Atlantic region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Janel Hanrahan, janel.hanrahan@northernvermont.edu

Abstract

Most inland water bodies are not resolved by general circulation models, requiring that lake surface temperatures be estimated. Given the large spatial and temporal variability of the surface temperatures of the North American Great Lakes, such estimations can introduce errors when used as lower boundary conditions for dynamical downscaling. Lake surface temperatures (LSTs) influence moisture and heat fluxes, thus impacting precipitation within the immediate region and potentially in regions downwind of the lakes. For this study, the Advanced Research version of the Weather Research and Forecasting Model (WRF-ARW) was used to simulate precipitation over the six New England states during a 5-yr historical period. The model simulation was repeated with perturbed LSTs, ranging from 10°C below to 10°C above baseline values obtained from reanalysis data, to determine whether the inclusion of erroneous LST values has an impact on simulated precipitation and synoptic-scale features. Results show that simulated precipitation in New England is statistically correlated with LST perturbations, but this region falls on a wet–dry line of a larger bimodal distribution. Wetter conditions occur to the north and drier conditions occur to the south with increasing LSTs, particularly during the warm season. The precipitation differences coincide with large-scale anomalous temperature, pressure, and moisture patterns. Care must therefore be taken to ensure reasonably accurate Great Lakes surface temperatures when simulating precipitation, especially in southeastern Canada, Maine, and the mid-Atlantic region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Janel Hanrahan, janel.hanrahan@northernvermont.edu

Supplementary Materials

    • Supplemental Materials (PDF 537.78 KB)
Save