• Alberto, M. C. R., R. Wassmann, T. Hirano, A. Miyata, A. Kumar, A. Padre, and M. Amante, 2009: CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agric. For. Meteor., 149, 17371750, https://doi.org/10.1016/j.agrformet.2009.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alberto, M. C. R., R. Wassmann, T. Hirano, A. Miyata, R. Hatano, A. Kumar, A. Padre, and M. Amante, 2011: Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manage., 98, 14171430, https://doi.org/10.1016/j.agwat.2011.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alberto, M. C. R., J. R. Quilty, R. J. Buresh, R. Wassmann, S. Haidar, T. Q. Correa, and J. M. Sandro, 2014: Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agric. Water Manage., 136, 112, https://doi.org/10.1016/j.agwat.2014.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9, 479492, https://doi.org/10.1046/j.1365-2486.2003.00629.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barr, A. G., K. Morgenstern, T. A. Black, J. H. McCaughey, and Z. Nesic, 2006: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. For. Meteor., 140, 322337, https://doi.org/10.1016/j.agrformet.2006.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, X., and et al. , 2007: Seasonal and diurnal variations in moisture, heat, and CO2 fluxes over grassland in the tropical monsoon region of Southern China. J. Geophys. Res., 112, D10106, https://doi.org/10.1029/2006JD007889.

    • Search Google Scholar
    • Export Citation
  • Burba, G., 2013: Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, 331 pp.

  • Burba, G., S. B. Verma, and J. Kim, 1999: Surface energy fluxes of Phragmites Australis in a prairie wetland. Agric. For. Meteor., 94, 3151, https://doi.org/10.1016/S0168-1923(99)00007-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W., and T. F. M. Chui, 2019: Temporal and spatial variations of energy balance closure across FLUXNET research sites. Agric. For. Meteor., 271, 1221, https://doi.org/10.1016/j.agrformet.2019.02.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., S. Kang, F. Li, Y. Zhang, and L. Tong, 2013: Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agric. For. Meteor., 168, 140148, https://doi.org/10.1016/j.agrformet.2012.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eshonkulov, R., A. Poyda, J. Ingwersen, A. Pulatov, and T. Streck, 2019: Improving the energy balance closure over a winter wheat field by accounting for minor storage terms. Agric. For. Meteor., 264, 283296, https://doi.org/10.1016/j.agrformet.2018.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248, https://doi.org/10.1007/BF00705527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franssen, H. H., R. Stöckli, I. Lehner, E. Rotenberg, and S. I. Seneviratne, 2010: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agric. For. Meteor., 150, 15531567, https://doi.org/10.1016/j.agrformet.2010.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Z., L. Bian, and X. Zhou, 2003: Measurements of turbulent transfer in the near-surface layer over a rice paddy in China. J. Geophys. Res., 108, 4387, https://doi.org/10.1029/2002JD002779.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., D. Lenschow, Z. He, and M. Zhou, 2009: Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia, China. Hydrol. Earth Syst. Sci., 13, 987998, https://doi.org/10.5194/hess-13-987-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, H. X., H. S. Zhang, H. Zhang, X. H. Cai, Y. Song, and L. Kang, 2018: The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agric. For. Meteor., 249, 228238, https://doi.org/10.1016/j.agrformet.2017.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossen, M. S., M. Mano, A. Miyata, M. A. Baten, and T. Hiyama, 2012: Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrol. Processes, 26, 13111320, https://doi.org/10.1002/hyp.8232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikawa, H., K. Ono, M. Mano, K. Kobayashi, T. Takimoto, T. Kuwagata, and A. Miyata, 2017: Evapotranspiration in a rice paddy field over 13 crop years. Nogyo Kisho, 73, 109118, https://doi.org/10.2480/agrmet.D-16-00011.

    • Search Google Scholar
    • Export Citation
  • Jia, X., and et al. , 2016: Energy partitioning over a semi-arid shrubland in northern China. Hydrol. Processes, 30, 972985, https://doi.org/10.1002/hyp.10685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z. Q., T. R. Shah, L. Zhang, H. Y. Liu, S. B. Peng, and L. X. Nie, 2020: Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur., 9, e200, https://doi.org/10.1002/fes3.200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 304 pp.

    • Crossref
    • Export Citation
  • Kang, M., and S. Cho, 2021: Progress in water and energy flux studies in Asia: A review focused on eddy covariance measurements. Nogyo Kisho, 77, 223, https://doi.org/10.2480/agrmet.D-20-00036.

    • Search Google Scholar
    • Export Citation
  • Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2015: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev., 8, 36953713, https://doi.org/10.5194/gmd-8-3695-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumari, M., and et al. , 2011: Soil aggregation and associated organic carbon fractions as affected by tillage in a rice–wheat rotation in North India. Soil. Sci. Soc. Amer. J., 75, 560567, https://doi.org/10.2136/sssaj2010.0185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, T., and et al. , 2020: How are annual CH4, N2O, and NO emissions from rice–wheat system affected by nitrogen fertilizer rate and type? Appl. Soil Ecol., 150, 103469, https://doi.org/10.1016/j.apsoil.2019.103469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., W. Massman, and B. Law, 2004: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Springer, 250 pp.

    • Crossref
    • Export Citation
  • Lei, H., and D. Yang, 2010: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agric. For. Meteor., 150, 581589, https://doi.org/10.1016/j.agrformet.2010.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Z. Gao, Y. Li, and B. Tong, 2017: Comparison of sensible heat fluxes measured by a large aperture scintillometer and eddy covariance system over a heterogeneous farmland in East China. Atmosphere, 8, 101, https://doi.org/10.3390/atmos8060101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., Y. Cui, Y. Luo, Y. Shi, M. Liu, and F. Liu, 2019: Energy partitioning and evapotranspiration over a rotated paddy field in southern China. Agric. For. Meteor., 276–277, 107626, https://doi.org/10.1016/j.agrformet.2019.107626.

    • Search Google Scholar
    • Export Citation
  • Liu, X. Y., J. Z. Xu, S. H. Yang, and J. G. Zhang, 2018: Rice evapotranspiration at the field and canopy scales under water-saving irrigation. Meteor. Atmos. Phys., 130, 227240, https://doi.org/10.1007/s00703-017-0507-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, N., Y. Zhang, Y. Guo, H. Gao, H. Zhang, and Y. Wang, 2015: Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. J. Hydrol., 529, 980992, https://doi.org/10.1016/j.jhydrol.2015.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majozi, N. P., C. M. Mannaerts, A. Ramoelo, R. Mathieu, A. Nickless, and W. Verhoef, 2017: Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci., 21, 34013415, https://doi.org/10.5194/hess-21-3401-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martano, P., 2000: Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J. Appl. Meteor. Climatol., 39, 708715, https://doi.org/10.1175/1520-0450(2000)039<0708:EOSRLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masseroni, D., A. Facchi, M. Romani, E. A. Chiaradia, O. Gharsallah, and C. Gandolfi, 2015: Surface energy flux measurements in a flooded and an aerobic rice field using a single eddy-covariance system. Paddy Water Environ., 13, 405424, https://doi.org/10.1007/s10333-014-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauder, M., T. Foken, and J. Cuxart, 2020: Surface-energy-balance closure over land: A review. Bound.-Layer Meteor., 177, 395426, https://doi.org/10.1007/s10546-020-00529-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, T. P., and S. E. Hollinger, 2004: An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteor., 125, 105115, https://doi.org/10.1016/j.agrformet.2004.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, J., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending, and filtering of eddy covariance time series. Handbook of Micrometeorology, Atmospheric and Oceanographic Sciences Library, Lee X., W. Massman, and B. Law, Eds., Vol. 29, Springer, 7–31, https://doi.org/10.1007/1-4020-2265-4_2.

    • Crossref
    • Export Citation
  • Oncley, S. P., and et al. , 2007: The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 128, https://doi.org/10.1007/s10546-007-9161-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, R., C. Liu, N. Cui, Y. Wu, Z. Wang, and G. Li, 2019: Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agric. Water Manage., 224, 105755, https://doi.org/10.1016/j.agwat.2019.105755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, M., T. G. Reichenau, P. Fiener, and K. Schneider, 2012: The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and inter-annual variability. Agric. For. Meteor., 165, 114126, https://doi.org/10.1016/j.agrformet.2012.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoy, P. C., and et al. , 2013: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric. For. Meteor., 171–172, 137152, https://doi.org/10.1016/j.agrformet.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Tanaka, H., T. Hiyama, N. Kobayashi, H. Yabuki, Y. Ishii, R. V. Desyatkin, T. C. Maximov, and T. Ohta, 2008: Energy balance and its closure over a young larch forest in eastern Siberia. Agric. For. Meteor., 148, 19541967, https://doi.org/10.1016/j.agrformet.2008.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timm, A. U., and et al. , 2014: Energy partitioning and evapotranspiration over a rice paddy in southern Brazil. J. Hydrometeor., 15, 19751988, https://doi.org/10.1175/JHM-D-13-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timsina, J., and D. J. Connor, 2001: Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crops Res., 69, 93132, https://doi.org/10.1016/S0378-4290(00)00143-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, J. L., B. J. Tsuang, P. S. Lu, M. H. Yao, and Y. Shen, 2007: Surface energy components and land characteristics of a rice paddy. J. Appl. Meteor. Climatol., 46, 18791900, https://doi.org/10.1175/2007JAMC1568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, https://doi.org/10.1002/qj.49710644707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K., and et al. , 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, https://doi.org/10.1016/S0168-1923(02)00109-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., D. Guan, S. Han, T. Shi, C. Jin, T. Pei, and G. Yu, 2007: Energy budget above a temperate mixed forest in northeastern China. Hydrol. Processes, 21, 24252434, https://doi.org/10.1002/hyp.6395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., C. Zhang, H. Oue, G. Wang, and B. He, 2015: Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field. Theor. Appl. Climatol., 122, 721728, https://doi.org/10.1007/s00704-014-1325-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., and et al. , 2019: Biophysical regulation of evapotranspiration in semiarid croplands. J. Soil Water Conserv., 74, 309318, https://doi.org/10.2489/jswc.74.3.309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., X. Xian, P. Fei, S. Dong, and Y. Gao, 2017: Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric. For. Meteor., 232, 4865, https://doi.org/10.1016/j.agrformet.2016.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., and et al. , 2013: The dual crop coefficient approach to estimate and partitioning [sic] evapotranspiration of the winter wheat–summer maize crop sequence in North China Plain. Irrig. Sci., 31, 13031316, https://doi.org/10.1007/s00271-013-0405-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., D. Xu, Y. Liu, F. Li, J. Cai, and L. Du, 2016: Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agric. For. Meteor., 216, 112, https://doi.org/10.1016/j.agrformet.2015.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., and et al. , 2008: Effects of the conversion of marshland to cropland on water and energy exchanges in northeastern China. J. Hydrol., 355, 181191, https://doi.org/10.1016/j.jhydrol.2008.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., Y. Xie, Z. Xiong, X. y. Yan, G. Xing, and Z. Zhu, 2009: Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu Lake region, China. Plant Soil, 319, 225234, https://doi.org/10.1007/s11104-008-9865-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 200 200 41
Full Text Views 55 55 12
PDF Downloads 71 71 16

Seasonal and Interannual Variations in the Surface Energy Fluxes of a Rice–Wheat Rotation in Eastern China

View More View Less
  • 1 a Climate and Weather Disasters Collaborative Innovation Center, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 b Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 3 c Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • | 4 d State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Quantitative knowledge of the water and energy exchanges in agroecosystems is vital for irrigation management and modeling crop production. In this study, the seasonal and annual variabilities of evapotranspiration (ET) and energy exchanges were investigated under two different crop environments—flooded and aerobic soil conditions—using three years (June 2014–May 2017) of eddy covariance observations over a rice–wheat rotation in eastern China. Across the whole rice–wheat rotation, the average daily ET rates in the rice paddies and wheat fields were 3.6 and 2.4 mm day−1, respectively. The respective average seasonal ET rates were 473 and 387 mm for rice and wheat fields, indicating a higher water consumption for rice than for wheat. Averaging for the three cropping seasons, rice paddies had 52% more latent heat flux than wheat fields, whereas wheat had 73% more sensible heat flux than rice paddies. This resulted in a lower Bowen ratio in the rice paddies (0.14) than in the wheat fields (0.4). Because eddy covariance observations of turbulent heat fluxes are typically less than the available energy (Rn − G; i.e., net radiation minus soil heat flux), energy balance closure (EBC) therefore does not occur. For rice, EBC was greatest at the vegetative growth stages (mean: 0.90) after considering the water heat storage, whereas wheat had its best EBC at the ripening stages (mean: 0.86).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiqiu Gao, zgao@mail.iap.ac.cn

Abstract

Quantitative knowledge of the water and energy exchanges in agroecosystems is vital for irrigation management and modeling crop production. In this study, the seasonal and annual variabilities of evapotranspiration (ET) and energy exchanges were investigated under two different crop environments—flooded and aerobic soil conditions—using three years (June 2014–May 2017) of eddy covariance observations over a rice–wheat rotation in eastern China. Across the whole rice–wheat rotation, the average daily ET rates in the rice paddies and wheat fields were 3.6 and 2.4 mm day−1, respectively. The respective average seasonal ET rates were 473 and 387 mm for rice and wheat fields, indicating a higher water consumption for rice than for wheat. Averaging for the three cropping seasons, rice paddies had 52% more latent heat flux than wheat fields, whereas wheat had 73% more sensible heat flux than rice paddies. This resulted in a lower Bowen ratio in the rice paddies (0.14) than in the wheat fields (0.4). Because eddy covariance observations of turbulent heat fluxes are typically less than the available energy (Rn − G; i.e., net radiation minus soil heat flux), energy balance closure (EBC) therefore does not occur. For rice, EBC was greatest at the vegetative growth stages (mean: 0.90) after considering the water heat storage, whereas wheat had its best EBC at the ripening stages (mean: 0.86).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiqiu Gao, zgao@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 327.83 KB)
Save