• Bodas-Salcedo, A., and et al. , 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, D. L., and D. W. Bouldin, 1979: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1, 224227, https://doi.org/10.1109/TPAMI.1979.4766909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delgado-Bonal, A., A. Marshak, Y. Yang, and L. Oreopoulos, 2021: Global daytime variability of clouds from DSCOVR/EPIC observations. Geophys. Res. Lett., 48, e2020GL091511, https://doi.org/10.1029/2020GL091511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., W. B. Rossow, and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14, 1128, https://doi.org/10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and et al. , 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., 2020: Dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) Mission’s Core Observatory. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 183–192.

    • Crossref
    • Export Citation
  • Iguchi, T., and et al. , 2018: GPM/DPR level-2 algorithm theoretical basis document. NASA Doc., 127 pp., https://gpm.nasa.gov/sites/default/files/2019-05/ATBD_DPR_201811_with_Appendix3b.pdf.

  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, and D. Lee, 2017: Regime-based evaluation of cloudiness in CMIP5 models. Climate Dyn., 48, 89112, https://doi.org/10.1007/s00382-016-3064-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, D. Lee, J. Tan, and K.-m. Kim, 2020: Large-scale characteristics of tropical convective systems through the prism of cloud regime. J. Geophys. Res. Atmos., 125, e2019JD031157, https://doi.org/10.1029/2019JD031157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, D. Lee, J. Tan, and N. Cho, 2021: Cloud-precipitation hybrid regimes and their projection onto IMERG precipitation data. J. Appl. Meteor. Climatol., 60, 733748, https://doi.org/10.1175/JAMC-D-20-0253.1.

    • Search Google Scholar
    • Export Citation
  • Kato, S., K. Xu, T. Wong, N. G. Loeb, F. G. Rose, K. E. Trenberth, and T. J. Thorsen, 2016: Investigation of the residual in column-integrated atmospheric energy balance using cloud objects. J. Climate, 29, 74357452, https://doi.org/10.1175/JCLI-D-15-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., L. Oreopoulos, G. J. Huffman, W. B. Rossow, and I. Kang, 2013: The precipitation characteristics of ISCCP tropical weather states. J. Climate, 26, 772788, https://doi.org/10.1175/JCLI-D-11-00718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., M. D. Lebsock, L. Oreopoulos, and N. Cho, 2016: Interregional differences in MODIS-derived cloud regimes. J. Geophys. Res., 121, 11 64811 665, https://doi.org/10.1002/2016JD025193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S., J. K. Fletcher, J. M. Haynes, C. Franklin, A. Protat, and C. Jakob, 2015: A hybrid cloud regime methodology used to evaluate Southern Ocean cloud and shortwave radiation errors in ACCESS. J. Climate, 28, 60016018, https://doi.org/10.1175/JCLI-D-14-00846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., and S. Parsons, 2018: A comparison of cloud classification methodologies: Differences between cloud and dynamical regimes. J. Geophys. Res., 123, 11 17311 193, https://doi.org/10.1029/2018JD028595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., J. J. Cassano, B. Jolly, S. Parsons, and A. Schuddeboom, 2016: An automated satellite cloud classification scheme using self-organizing maps: Alternative ISCCP weather states. J. Geophys. Res., 121, 13 00913 030, https://doi.org/10.1002/2016JD025199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and W. B. Rossow, 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, https://doi.org/10.1029/2010JD015472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, S. Kato, and G. J. Huffman, 2014: An examination of the nature of global MODIS cloud regimes. J. Geophys. Res., 119, 83628383, https://doi.org/10.1002/2013JD021409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, and S. Kato, 2016: Radiative effects of global MODIS cloud regimes. J. Geophys. Res., 121, 22992317, https://doi.org/10.1002/2015JD024502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017: New insights about cloud vertical structure from CloudSat and CALIPSO observations. J. Geophys. Res., 122, 92809300, https://doi.org/10.1002/2017JD026629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. Patrick Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, https://doi.org/10.1175/JCLI-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Y. Zhang, and G. Tselioudis, 2016: Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, 10591065, https://doi.org/10.1175/JCLI-D-15-0760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2012: The clouds of the middle troposphere: Composition, radiative impact, and global distribution. Surv. Geophys., 33, 677691, https://doi.org/10.1007/s10712-011-9163-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuddeboom, A., A. J. McDonald, O. Morgenstern, M. Harvey, and S. Parsons, 2018: Regional regime-based evaluation of present-day general circulation model cloud simulations using self-organizing maps. J. Geophys. Res., 123, 42594272, https://doi.org/10.1002/2017JD028196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuddeboom, A., V. Varma, A. J. McDonald, O. Morgenstern, M. Harvey, S. Parsons, P. Field, and K. Furtado, 2019: Cluster-based evaluation of model compensating errors: A case study of cloud radiative effect in the Southern Ocean. Geophys. Res. Lett., 46, 34463453, https://doi.org/10.1029/2018GL081686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-Train: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L’Ecuyer, and M. Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/BAMS-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and L. Oreopoulos, 2019: Subgrid precipitation properties of mesoscale atmospheric systems represented by MODIS cloud regimes. J. Climate, 32, 17971812, https://doi.org/10.1175/JCLI-D-18-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., L. Oreopoulos, C. Jakob, and D. Jin, 2018: Evaluating rainfall errors in global climate models through cloud regimes. Climate Dyn., 50, 33013314, https://doi.org/10.1007/s00382-017-3806-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. Rossow, Y. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, https://doi.org/10.1175/JCLI-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, and J. London, 1985: Simultaneous occurrence of different cloud types. J. Climate Appl. Meteor., 24, 658667, https://doi.org/10.1175/1520-0450(1985)024<0658:SOODCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, https://doi.org/10.1007/s00382-008-0443-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and et al. , 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111230, https://doi.org/10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A. H., K. R. Knapp, A. Inamdar, W. Hankins, and W. B. Rossow, 2018: The International Satellite Cloud Climatology Project H-Series climate data record product. Earth Syst. Sci. Data, 10, 583593, https://doi.org/10.5194/essd-10-583-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and et al. , 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective particle radius for marine water clouds from three MODIS spectral bands. J. Geophys. Res., 116, D20215, https://doi.org/10.1029/2011JD016216.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 37
Full Text Views 42 42 10
PDF Downloads 58 58 18

Classifying Planetary Cloudiness with an Updated Set of MODIS Cloud Regimes

View More View Less
  • 1 a Universities Space Research Association, Columbia, Maryland
  • | 2 b NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

We present an updated cloud regime (CR) dataset based on Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 cloud products, specifically, joint histograms that partition cloud fraction within distinct combinations of cloud-top pressure and cloud optical thickness ranges. The paper focuses on an edition of the CR dataset derived from our own aggregation of MODIS pixel-level cloud retrievals on an equal-area grid and prespecified 3-h UTC intervals that spatiotemporally match International Satellite Cloud Climatology Project (ISCCP) gridded cloud data. The other edition comes from the 1° daily aggregation provided by standard MODIS Level-3 data, as in previous versions of the MODIS CRs, for easier use with datasets mapped on equal-angle grids. Both editions consist of 11 clusters whose centroids are nearly identical. We provide a physical interpretation of the new CRs and aspects of their climatology that have not been previously examined, such as seasonal and interannual variability of CR frequency of occurrence. We also examine the makeup and precipitation properties of the CRs assisted by independent datasets originating from active observations and provide a first glimpse of how MODIS CRs relate to clouds as seen by ISCCP.

SIGNIFICANCE STATEMENT

We present an updated 17-yr dataset of global cloudiness classification from the space-based MODIS instrument. This dataset exhibits similar consistency with the cloud and precipitation characteristics seen by active observations in the previous version, but its greater length allows an initial analysis of trends of cloud systems with distinct physical properties and geographical characteristics. Furthermore, custom tailoring to spatiotemporally match the ISCCP dataset enables systematic comparisons with that seminal description of cloud climatological characteristics.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lazaros Oreopoulos, lazaros.oreopoulos@nasa.gov

Abstract

We present an updated cloud regime (CR) dataset based on Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 cloud products, specifically, joint histograms that partition cloud fraction within distinct combinations of cloud-top pressure and cloud optical thickness ranges. The paper focuses on an edition of the CR dataset derived from our own aggregation of MODIS pixel-level cloud retrievals on an equal-area grid and prespecified 3-h UTC intervals that spatiotemporally match International Satellite Cloud Climatology Project (ISCCP) gridded cloud data. The other edition comes from the 1° daily aggregation provided by standard MODIS Level-3 data, as in previous versions of the MODIS CRs, for easier use with datasets mapped on equal-angle grids. Both editions consist of 11 clusters whose centroids are nearly identical. We provide a physical interpretation of the new CRs and aspects of their climatology that have not been previously examined, such as seasonal and interannual variability of CR frequency of occurrence. We also examine the makeup and precipitation properties of the CRs assisted by independent datasets originating from active observations and provide a first glimpse of how MODIS CRs relate to clouds as seen by ISCCP.

SIGNIFICANCE STATEMENT

We present an updated 17-yr dataset of global cloudiness classification from the space-based MODIS instrument. This dataset exhibits similar consistency with the cloud and precipitation characteristics seen by active observations in the previous version, but its greater length allows an initial analysis of trends of cloud systems with distinct physical properties and geographical characteristics. Furthermore, custom tailoring to spatiotemporally match the ISCCP dataset enables systematic comparisons with that seminal description of cloud climatological characteristics.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lazaros Oreopoulos, lazaros.oreopoulos@nasa.gov
Save