• Akinlade, O. G., D. J. Bergstrom, M. F. Tachie, and L. Castillo, 2004: Outer flow scaling of smooth and rough wall turbulent boundary layers. Exp. Fluids, 37, 604612, https://doi.org/10.1007/s00348-004-0856-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansorge, C., and J. P. Mellado, 2016: Analyses of external and global intermittency in the logarithmic layer of Ekman flow. J. Fluid Mech., 805, 611635, https://doi.org/10.1017/jfm.2016.534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbano, F., S. Di Sabatino, R. Stoll, and E. R. Pardyjak, 2020: A numerical study of the impact of vegetation on mean and turbulence fields in a European-city neighbourhood. Build. Environ., 186, 107293, https://doi.org/10.1016/j.buildenv.2020.107293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardina, J., J. Ferziger, and W. Reynolds, 1980: Improved subgrid-scale models for large-eddy simulation. 13th Fluid and Plasma Dynamics Conf., Snowmass, CO, AIAA, https://doi.org/10.2514/6.1980-1357.

    • Crossref
    • Export Citation
  • Biesbroek, R., S. Badloe, and I. N. Athanasiadis, 2020: Machine learning for research on climate change adaptation policy integration: An exploratory UK case study. Reg. Environ. Change, 20, 85, https://doi.org/10.1007/s10113-020-01677-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blocken, B., T. Stathopoulos, and J. Carmeliet, 2007: CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos. Environ., 41, 238252, https://doi.org/10.1016/j.atmosenv.2006.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, and M. Optis, 2020: Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain? Geosci. Model Dev., 13, 42714285, https://doi.org/10.5194/gmd-13-4271-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., W. Anderson, G. G. Katul, and L. Mahrt, 2020: The persistent challenge of surface heterogeneity in boundary-layer meteorology: A review. Bound.-Layer Meteor., 177, 227245, https://doi.org/10.1007/s10546-020-00551-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123140, https://doi.org/10.1007/BF00058655.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Britter, R. E., and S. R. Hanna, 2003: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech., 35, 469496, https://doi.org/10.1146/annurev.fluid.35.101101.161147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. J., 2000: Urban parameterizations for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, WIT Press, 193–255.

  • Brown, M. J., R. Lawson, D. DeCroix, and R. Lee, 2000: Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel. 11th Joint Conf. on the Applications of Air Pollution Meteorology, Long Beach, CA, Amer. Meteor. Soc., 4A.2, https://ams.confex.com/ams/annual2000/techprogram/paper_314.htm.

  • Buccolieri, R., M. Sandberg, H. Wigö, and S. Di Sabatino, 2019: The drag force distribution within regular arrays of cubes and its relation to cross ventilation—Theoretical and experimental analyses. J. Wind Eng. Ind. Aerodyn., 189, 91103, https://doi.org/10.1016/j.jweia.2019.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cancelli, D. M., N. L. Dias, and M. Chamecki, 2012: Dimensionless criteria for the production-dissipation equilibrium of scalar fluctuations and their implications for scalar similarity. Water Resour. Res., 48, W10522, https://doi.org/10.1029/2012WR012127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., and I. Castro, 2002: Near wall flow over urban-like roughness. Bound.-Layer Meteor., 104, 229259, https://doi.org/10.1023/A:1016060103448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., P. Hayden, A. Robins, and I. Castro, 2007: Flow over cube arrays of different packing densities. J. Wind Eng. Ind. Aerodyn., 95, 715740, https://doi.org/10.1016/j.jweia.2007.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., and C.-H. Liu, 2011: Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities. J. Wind Eng. Ind. Aerodyn., 99, 434442, https://doi.org/10.1016/j.jweia.2010.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., and et al. , 2019: Deep learning for subgrid-scale turbulence modeling in large-eddy simulations of the atmospheric boundary layer. arXiv, 33 pp., https://arxiv.org/ftp/arxiv/papers/1910/1910.12125.pdf.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., Q. Li, A. Grachev, S. Argentini, H. J. S. Fernando, and P. Gentine, 2020: Power-law scaling of turbulence cospectra for the stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 177, 118, https://doi.org/10.1007/s10546-020-00545-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chew, L. W., X. Liu, X.-X. Li, and L. K. Norford, 2020: Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmos. Res., 247, 105134, https://doi.org/10.1016/j.atmosres.2020.105134.

    • Search Google Scholar
    • Export Citation
  • Cui, Z., X. Cai, and C. J. Baker, 2004: Large-eddy simulation of turbulent flow in a street canyon. Quart. J. Roy. Meteor. Soc., 130, 13731394, https://doi.org/10.1256/qj.02.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Ambrosio, A., and V. A. Tutore, 2011: Conditional classification trees by weighting the Gini impurity measure. New Perspectives in Statistical Modeling and Data Analysis, S. Ingrassia, R. Rocci, and M. Vichi, Eds., Springer-Verlag, 273–280.

    • Crossref
    • Export Citation
  • Davenport, A. G., C. S. B. Grimmond, T. R. Oke, and J. Wieringa, 2000: Estimating the roughness of cities and sheltered country. 12th Conf. on Applied Climatology, Asheville, NC, Amer. Meteor. Soc., 4B.2, https://ams.confex.com/ams/May2000/techprogram/paper_13744.htm.

  • Deardorff, J., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, G., and K. Ngan, 2018: Effects of time-dependent inflow perturbations on turbulent flow in a street canyon. Bound.-Layer Meteor., 167, 257284, https://doi.org/10.1007/s10546-017-0327-1.

    • Search Google Scholar
    • Export Citation
  • Duan, G., and K. Ngan, 2019: Sensitivity of turbulent flow around a 3-D building array to urban boundary-layer stability. J. Wind Eng. Ind. Aerodyn., 193, 103958, https://doi.org/10.1016/j.jweia.2019.103958.

    • Crossref
    • Export Citation
  • Duan, G., and K. Ngan, 2020: Influence of thermal stability on the ventilation of a 3-D building array. Build. Environ., 183, 106969, https://doi.org/10.1016/j.buildenv.2020.106969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, G., and T. Takemi, 2021: Gustiness in thermally-stratified urban turbulent boundary-layer flows and the influence of surface roughness. J. Wind Eng. Ind. Aerodyn., 208, 10 442, https://doi.org/10.1016/j.jweia.2020.104442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., A. C. M. Beljaars, A. A. M. Holtslag, and A. P. Lock, 2020: Representation of boundary-layer processes in numerical weather prediction and climate models. Bound.-Layer Meteor., 177, 511539, https://doi.org/10.1007/s10546-020-00530-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichhorn, J., 2004: Application of a new evaluation guideline for microscale flow models. Ninth Int. Conf. on Harmonisation within Atmospheric Dispersion Modeling for Regulatory Purposes, Garmisch-Partenkirchen, Germany, HARMO, http://www.harmo.org/Conferences/Proceedings/_Garmisch/publishedSections/PPT/1.10-Eichhorn.pdf.

  • Fang, J., and F. Porté-Agel, 2015: Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer. Bound.-Layer Meteor., 155, 397416, https://doi.org/10.1007/s10546-015-0006-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, H. M. Christensen, A. C. Subramanian, and A. H. Monahan, 2020: Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz ’96 model. J. Adv. Model. Earth Syst., 12, e2019MS001896, https://doi.org/10.1029/2019MS001896.

    • Crossref
    • Export Citation
  • Ghorbani, M. A., R. C. Deo, S. Kim, M. Hasanpour Kashani, V. Karimi, and M. Izadkhah, 2020: Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia. Soft Comput., 24, 12 07912 090, https://doi.org/10.1007/s00500-019-04648-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38, 12621292, https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronemeier, T., K. Surm, F. Harms, B. Leitl, B. Maronga, and S. Raasch, 2021: Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: Comparison between LES and wind-tunnel experiments. Geosci. Model Dev., 14, 33173333, https://doi.org/10.5194/gmd-14-3317-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagishima, A., J. Tanimoto, K. Nagayama, and S. Meno, 2009: Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Bound.-Layer Meteor., 132, 315337, https://doi.org/10.1007/s10546-009-9403-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanafusa, T., T. Fujitani, Y. Kobori, and Y. Mitsuta, 1982: A new type sonic anemometer-thermometer for field operation. Pap. Meteor. Geophys., 33, 119, https://doi.org/10.2467/mripapers.33.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and et al. , 2006: Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Amer. Meteor. Soc., 87, 17131726, https://doi.org/10.1175/BAMS-87-12-1713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugen, D., J. Kaimal, and E. Bradley, 1971: An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 97, 168180, https://doi.org/10.1002/qj.49709741204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and et al. , 2020: On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Amer. Meteor. Soc., 100, 25332550, https://doi.org/10.1175/BAMS-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horiguchi, M., T. Hayashi, H. Hashiguchi, Y. Ito, and H. Ueda, 2010: Observations of coherent turbulence structures in the near-neutral atmospheric boundary layer. Bound.-Layer Meteor., 136, 2544, https://doi.org/10.1007/s10546-010-9500-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, N., and I. Marusic, 2007: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech., 579, 128, https://doi.org/10.1017/S0022112006003946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inagaki, A., and M. Kanda, 2008: Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J. Fluid Mech., 615, 101120, https://doi.org/10.1017/S0022112008003765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. A. Businger, 1963: A continuous wave sonic anemometer-thermometer. J. Appl. Meteor., 2, 156164, https://doi.org/10.1175/1520-0450(1963)002<0156:ACWSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. C. Wyngaard, 1990: The Kansas and Minnesota experiments. Bound.-Layer Meteor., 50, 3147, https://doi.org/10.1007/BF00120517.

  • Kaimal, J. C., J. C. Wyngaard, D. Haugen, O. Coté, Y. Izumi, S. Caughey, and C. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46, 10671079, https://doi.org/10.1175/JAM2500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanda, M., A. Inagaki, T. Miyamoto, M. Gryschka, and S. Raasch, 2013: A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteor., 148, 357377, https://doi.org/10.1007/s10546-013-9818-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kastner-Klein, P., and M. W. Rotach, 2004: Mean flow and turbulence characteristics in an urban roughness sublayer. Bound.-Layer Meteor., 111, 5584, https://doi.org/10.1023/B:BOUN.0000010994.32240.b1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., and J. M. Galvez, 2015: Flow and turbulence characteristics in a suburban street canyon. Environ. Fluid Mech., 15, 419438, https://doi.org/10.1007/s10652-014-9352-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lellep, M., J. Prexl, M. Linkmann, and B. Eckhardt, 2020: Using machine learning to predict extreme events in the Hénon map. Chaos, 30, 013113, https://doi.org/10.1063/1.5121844.

    • Crossref
    • Export Citation
  • Li, B., X. Zhang, and X. Zhang, 2020: Classifying wakes produced by self-propelled fish-like swimmers using neural networks. Theor. Appl. Mech. Lett., 10, 149154, https://doi.org/10.1016/j.taml.2020.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. W., and K. Ngan, 2017: Characterizing ventilation and exposure in street canyons using Lagrangian particles. J. Appl. Meteor. Climatol., 56, 11771194, https://doi.org/10.1175/JAMC-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. W., and K. Ngan, 2020: Multiscale parameterisation of passive scalars via wavelet-based numerical homogenisation. Appl. Math. Modell., 82, 217234, https://doi.org/10.1016/j.apm.2020.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, R., R. Griffiths, and D. Hall, 1998: An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 18571864, https://doi.org/10.1016/S1352-2310(97)00403-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKay, D. J. C., 2003: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 628 pp.

  • Mahrt, L., and E. Bou-Zeid, 2020: Non-stationary boundary layers. Bound.-Layer Meteor., 177, 189204, https://doi.org/10.1007/s10546-020-00533-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and et al. , 2020a: Overview of the PALM model system 6.0. Geosci. Model Dev., 13, 13351372, https://doi.org/10.5194/gmd-13-1335-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., C. Knigge, and S. Raasch, 2020b: An improved surface boundary condition for large-eddy simulations based on Monin–Obukhov similarity theory: Evaluation and consequences for grid convergence in neutral and stable conditions. Bound.-Layer Meteor., 174, 297325, https://doi.org/10.1007/s10546-019-00485-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menze, B. H., B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, and F. A. Hamprecht, 2009: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinf., 10, 213, https://doi.org/10.1186/1471-2105-10-213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michioka, T., and A. Sato, 2012: Effect of incoming turbulent structure on pollutant removal from two-dimensional street canyon. Bound.-Layer Meteor., 145, 469484, https://doi.org/10.1007/s10546-012-9733-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michioka, T., H. Takimoto, H. Ono, and A. Sato, 2019: Large-eddy simulation of the effects of wind-direction fluctuations on turbulent flow and gas dispersion within a cubical canopy. Bound.-Layer Meteor., 173, 243262, https://doi.org/10.1007/s10546-019-00467-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J., B. Kosović, and G. Kirkil, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, https://doi.org/10.1175/MWR-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. M., 1997: Machine Learning. McGraw-Hill, 414 pp.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, https://doi.org/10.1007/s10546-014-9956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munters, W., C. Meneveau, and J. Meyers, 2016: Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows. Phys. Fluids, 28, 025112, https://doi.org/10.1063/1.4941912.

    • Crossref
    • Export Citation
  • Nakayama, H., T. Takemi, and H. Nagai, 2011: LES analysis of the aerodynamic surface properties for turbulent flows over building arrays with various geometries. J. Appl. Meteor. Climatol., 50, 16921712, https://doi.org/10.1175/2011JAMC2567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarian, N., E. S. Krayenhoff, and A. Martilli, 2020: A one-dimensional model of turbulent flow through “urban” canopies (MLUCM v2.0): Updates based on large-eddy simulation. Geosci. Model Dev., 13, 937953, https://doi.org/10.5194/gmd-13-937-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., and K. W. Lo, 2016: Revisiting the flow regimes for urban street canyons using the numerical Green’s function. Environ. Fluid Mech., 16, 313334, https://doi.org/10.1007/s10652-015-9422-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oikawa, S., and Y. Meng, 1995: Turbulence characteristics and organized motion in a suburban roughness sublayer. Bound.-Layer Meteor., 74, 289312, https://doi.org/10.1007/BF00712122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olesen, H. R., S. E. Larsen, and J. Højstrup, 1984: Modelling velocity spectra in the lower part of the planetary boundary layer. Bound.-Layer Meteor., 29, 285312, https://doi.org/10.1007/BF00119794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., J.-J. Baik, and B.-S. Han, 2015a: Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ. Fluid Mech., 15, 235250, https://doi.org/10.1007/s10652-013-9306-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., J.-J. Baik, and S.-H. Lee, 2015b: Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area. J. Appl. Meteor. Climatol., 54, 811824, https://doi.org/10.1175/JAMC-D-14-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, K. S., 1975: Effect of thermal stratification on the growth of the internal boundary layer. Bound.-Layer Meteor., 8, 227234, https://doi.org/10.1007/BF00241339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA, 115, 96849689, https://doi.org/10.1073/pnas.1810286115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratti, C., S. Di Sabatino, R. Britter, M. Brown, F. Caton, and S. Burian, 2002: Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities. Water Air Soil Pollut. Focus, 2, 459469, https://doi.org/10.1023/A:1021380611553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunei, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Resler, J., and et al. , 2021: Validation of the PALM model system 6.0 in real urban environment; case study of Prague-Dejvice, Czech Republic. Geosci. Model Dev., https://doi.org/10.5194/gmd-2020-175, in press.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Galiano, V. F., M. Sanchez-Castillo, J. Dash, P. M. Atkinson, and J. Ojeda-Zujar, 2016: Modelling interannual variation in the spring and autumn land surface phenology of the European forest. Biogeosciences, 13, 33053317, https://doi.org/10.5194/bg-13-3305-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., 1993a: Turbulence close to a rough urban surface Part I: Reynolds stress. Bound.-Layer Meteor., 65, 128, https://doi.org/10.1007/BF00708816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., 1993b: Turbulence close to a rough urban surface Part II: Variances and gradients. Bound.-Layer Meteor., 66, 7592, https://doi.org/10.1007/BF00705460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., 1995: Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ., 29, 14731486, https://doi.org/10.1016/1352-2310(95)00084-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., 1999: On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos. Environ., 33, 40014008, https://doi.org/10.1016/S1352-2310(99)00141-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, https://doi.org/10.1002/qj.49712656409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santiago, J., A. Martilli, and F. Martín, 2007: CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel measurements. Bound.-Layer Meteor., 122, 609634, https://doi.org/10.1007/s10546-006-9123-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, C., and et al. , 2019: Impacts of high-resolution urban canopy parameters within the WRF Model on dynamical and thermal fields over Guangzhou, China. J. Appl. Meteor. Climatol., 58, 11551176, https://doi.org/10.1175/JAMC-D-18-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., T. Yoshida, M. Horiguchi, and W. Vanderbauwhede, 2020: Large-eddy-simulation analysis of airflows and strong wind hazards in urban areas. Urban Climate, 32, 100625, https://doi.org/10.1016/j.uclim.2020.100625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., J. Kurths, W. Lin, E. Ott, and L. Kocarev, 2020: Introduction to focus issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics. Chaos, 30, 063151, https://doi.org/10.1063/5.0016505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VDI, 2005: Environmental meteorology-prognostic microscale windfield models—Evaluation for flow around buildings and obstacles. VDI Standard 3783, 68 pp.

  • Wang, C., and W. Anderson, 2019: Turbulence coherence within canonical and realistic aeolian dune-field roughness sublayers. Bound.-Layer Meteor., 173, 409434, https://doi.org/10.1007/s10546-019-00477-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and E. Ng, 2018: Air ventilation assessment under unstable atmospheric stratification—A comparative study for Hong Kong. Build. Environ., 130, 113, https://doi.org/10.1016/j.buildenv.2017.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., Y. Xu, E. Ng, and S. Raasch, 2018: Evaluation of satellite-derived building height extraction by CFD simulations: A case study of neighborhood-scale ventilation in Hong Kong. Landscape Urban Plann., 170, 90102, https://doi.org/10.1016/j.landurbplan.2017.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Were, K., D. T. Bui, Ø. B. Dick, and B. R. Singh, 2015: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic., 52, 394403, https://doi.org/10.1016/j.ecolind.2014.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1992: Updating the davenport roughness classification. J. Wind Eng. Ind. Aerodyn., 41, 357368, https://doi.org/10.1016/0167-6105(92)90434-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, J., 1980: Low-storage Runge-Kutta schemes. J. Comput. Phys., 35, 4856, https://doi.org/10.1016/0021-9991(80)90033-9.

  • Yoshida, T., T. Takemi, and M. Horiguchi, 2018: Large-eddy-simulation study of the effects of building-height variability on turbulent flows over an actual urban area. Bound.-Layer Meteor., 168, 127153, https://doi.org/10.1007/s10546-018-0344-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zitnik, M., F. Nguyen, B. Wang, J. Leskovec, A. Goldenberg, and M. M. Hoffman, 2019: Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion, 50, 7191, https://doi.org/10.1016/j.inffus.2018.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 135 135 29
Full Text Views 30 30 7
PDF Downloads 49 49 14

Predicting Urban Surface Roughness Aerodynamic Parameters Using Random Forest

View More View Less
  • 1 a Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The surface roughness aerodynamic parameters z 0 (roughness length) and d (zero-plane displacement height) are vital to the accuracy of the Monin–Obukhov similarity theory. Deriving improved urban canopy parameterization (UCP) schemes within the conventional framework remains mathematically challenging. The current study explores the potential of a machine-learning (ML) algorithm, a random forest (RF), as a complement to the traditional UCP schemes. Using large-eddy simulation and ensemble sampling, in combination with nonlinear least squares regression of the logarithmic-layer wind profiles, a dataset of approximately 4.5 × 103 samples is established for the aerodynamic parameters and the morphometric statistics, enabling the training of the ML model. While the prediction for d is not as good as the UCP after Kanda et al., the performance for z 0 is notable. The RF algorithm also categorizes z 0 and d with an exceptional performance score: the overall bell-shaped distributions are well predicted, and the ±0.5σ category (i.e., the 38% percentile) is competently captured (37.8% for z 0 and 36.5% for d). Among the morphometric features, the mean and maximum building heights (H ave and H max, respectively) are found to be of predominant influence on the prediction of z 0 and d. A perhaps counterintuitive result is the considerably less striking importance of the building-height variability. Possible reasons are discussed. The feature importance scores could be useful for identifying the contributing factors to the surface aerodynamic characteristics. The results may shed some light on the development of ML-based UCP for mesoscale modeling.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Duan, g.duan@storm.dpri.kyoto-u.ac.jp

Abstract

The surface roughness aerodynamic parameters z 0 (roughness length) and d (zero-plane displacement height) are vital to the accuracy of the Monin–Obukhov similarity theory. Deriving improved urban canopy parameterization (UCP) schemes within the conventional framework remains mathematically challenging. The current study explores the potential of a machine-learning (ML) algorithm, a random forest (RF), as a complement to the traditional UCP schemes. Using large-eddy simulation and ensemble sampling, in combination with nonlinear least squares regression of the logarithmic-layer wind profiles, a dataset of approximately 4.5 × 103 samples is established for the aerodynamic parameters and the morphometric statistics, enabling the training of the ML model. While the prediction for d is not as good as the UCP after Kanda et al., the performance for z 0 is notable. The RF algorithm also categorizes z 0 and d with an exceptional performance score: the overall bell-shaped distributions are well predicted, and the ±0.5σ category (i.e., the 38% percentile) is competently captured (37.8% for z 0 and 36.5% for d). Among the morphometric features, the mean and maximum building heights (H ave and H max, respectively) are found to be of predominant influence on the prediction of z 0 and d. A perhaps counterintuitive result is the considerably less striking importance of the building-height variability. Possible reasons are discussed. The feature importance scores could be useful for identifying the contributing factors to the surface aerodynamic characteristics. The results may shed some light on the development of ML-based UCP for mesoscale modeling.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Duan, g.duan@storm.dpri.kyoto-u.ac.jp
Save