Abstract
Persistent cold pools form as layers of cold stagnant air within topographical depressions mainly during wintertime, when the near-surface air cools and/or the air aloft warms and daytime surface heating is insufficient to mix out the stable layer. An area often affected by persistent cold pools is the Columbia River basin in the Pacific Northwest, when a high pressure system east of the Cascade Range promotes radiative cooling and easterly flow. The only major outflow for the easterly flow is through the narrow Columbia River Gorge that cuts through the north–south-oriented Cascade Range and often experiences very strong gap flows. Observations collected during the Second Wind Forecast Improvement Project (WFIP2) are used to study a persistent cold pool in the Columbia River basin between 10 and 19 January 2017 that was associated with a strong gap flow. We used data from various remote sensing and in situ instruments and an optimal estimation physical retrieval to obtain thermodynamic profiles to address the temporal and spatial characteristics of the cold pool and gap flow and to investigate the physical processes involved during formation, maintenance, and decay. While large-scale temperature advection occurred during all phases, we found that the cold-pool vertical structure was modulated by the existence of low-level clouds and that turbulent shear-induced mixing and downslope wind storms likely played a role during its decay.
SIGNIFICANCE STATEMENT
To integrate wind energy produced during cold-pool events into the electrical grid, accurate forecasts of these events and the associated rapid changes in wind speed are necessary. This still imposes a challenge for weather prediction models. In this study we aim to get a detailed understanding of the evolution and involved physical processes of a strong cold-pool event in the Columbia River basin, which is home to a large amount of wind energy production. The results will form the basis of a future model study to investigate the model’s capability in capturing the cold pool and to identify potential flaws.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).