Polarimetric Observations and Simulations of Sublimating Snow: Implications for Nowcasting

Jacob T. Carlin aCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jacob T. Carlin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7841-3217
,
Heather D. Reeves aCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Heather D. Reeves in
Current site
Google Scholar
PubMed
Close
, and
Alexander V. Ryzhkov aCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow sublimating in dry air is a forecasting challenge and can delay the onset of surface snowfall and affect storm-total accumulations. Despite this fact, it remains comparatively less studied than other microphysical processes. Herein, the characteristics of sublimating snow and the potential for nowcasting snowfall reaching the surface are explored through the use of dual-polarization radar. Twelve cases featuring prolific sublimation were analyzed using range-defined quasi-vertical profiles (RDQVPs) and were compared with environmental model analyses. Overall, reflectivity Z significantly decreases, differential reflectivity ZDR slightly decreases, and copolar-correlation coefficient ρhv remains nearly constant through the sublimation layer. Regions of enhanced specific differential phase Kdp were frequently observed in the sublimation layer and are believed to be polarimetric evidence of secondary ice production via sublimation. A 1D bin model was initialized using particle size distributions retrieved from the RDQVPs using numerous novel polarimetric snow retrieval relations for a wide range of forecast lead times, with the model environment evolving in response to sublimation. It was found that the model was largely able to predict the snowfall start time up to 6 h in advance, with a 6-h median bias of just −18.5 min. A more detailed case study of the 8 December 2013 snowstorm in the Philadelphia, Pennsylvania, region was also performed, demonstrating good correspondence with observations and examples of model fields (e.g., cooling rate) hypothetically available from such a tool. The proof-of-concept results herein demonstrate the potential benefits of incorporating spatially averaged radar data in conjunction with simple 1D models into the nowcasting process.

Significance Statement

The goals of this work are to comprehensively survey the dual-polarization radar characteristics of snow evaporating in dry air and to investigate whether information gleaned from polarimetric radars can be used with a predictive model to help make short-term predictions about when snow will overcome dry air and reach the ground. We found that by using this radar information and a simple model we could predict the start time of snow up to 6 h in advance with reasonable accuracy. In conjunction with other available data, this proof of concept could help forecasters to make short-term predictions about when snowfall impacts will begin.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov

Abstract

Snow sublimating in dry air is a forecasting challenge and can delay the onset of surface snowfall and affect storm-total accumulations. Despite this fact, it remains comparatively less studied than other microphysical processes. Herein, the characteristics of sublimating snow and the potential for nowcasting snowfall reaching the surface are explored through the use of dual-polarization radar. Twelve cases featuring prolific sublimation were analyzed using range-defined quasi-vertical profiles (RDQVPs) and were compared with environmental model analyses. Overall, reflectivity Z significantly decreases, differential reflectivity ZDR slightly decreases, and copolar-correlation coefficient ρhv remains nearly constant through the sublimation layer. Regions of enhanced specific differential phase Kdp were frequently observed in the sublimation layer and are believed to be polarimetric evidence of secondary ice production via sublimation. A 1D bin model was initialized using particle size distributions retrieved from the RDQVPs using numerous novel polarimetric snow retrieval relations for a wide range of forecast lead times, with the model environment evolving in response to sublimation. It was found that the model was largely able to predict the snowfall start time up to 6 h in advance, with a 6-h median bias of just −18.5 min. A more detailed case study of the 8 December 2013 snowstorm in the Philadelphia, Pennsylvania, region was also performed, demonstrating good correspondence with observations and examples of model fields (e.g., cooling rate) hypothetically available from such a tool. The proof-of-concept results herein demonstrate the potential benefits of incorporating spatially averaged radar data in conjunction with simple 1D models into the nowcasting process.

Significance Statement

The goals of this work are to comprehensively survey the dual-polarization radar characteristics of snow evaporating in dry air and to investigate whether information gleaned from polarimetric radars can be used with a predictive model to help make short-term predictions about when snow will overcome dry air and reach the ground. We found that by using this radar information and a simple model we could predict the start time of snow up to 6 h in advance with reasonable accuracy. In conjunction with other available data, this proof of concept could help forecasters to make short-term predictions about when snowfall impacts will begin.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov
Save
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ASOS Program Office Staff, 1998: Automated Surface Observing System user’s guide. National Weather Service ASOS Program Office Tech. Rep., 70 pp., https://www.weather.gov/media/asos/aum-toc.pdf.

  • Associated Press, 2013: Winter weather causes pile-ups, flight delays and leaves dangerous roads for Mid-Atlantic commuters. CBS News, 9 December 2013, https://www.cbsnews.com/news/winter-weather-snow-storm-mid-atlantic-commuters/.

  • Auria, R., and B. Campistron, 1987: Origin of precipitation and dynamic organization in wavelike precipitation bands. J. Atmos. Sci., 44, 33293340, https://doi.org/10.1175/1520-0469(1987)044<3329:OOPADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, N., B. D. Swanson, M. B. Baker, and E. J. Davis, 1998: Breakup of levitated frost particles. J. Geophys. Res., 103, 13 76313 775, https://doi.org/10.1029/98JD01162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitation clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, https://doi.org/10.1175/JAMC-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. W., and T. L. Mote, 2015a: Characteristics of winter-precipitation-related transportation fatalities in the United States. Wea. Climate Soc., 7, 133145, https://doi.org/10.1175/WCAS-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. W., and T. L. Mote, 2015b: Effects of winter precipitation on automobile collisions, injuries, and fatalities in the United States. J. Transp. Geogr., 48, 165175, https://doi.org/10.1016/j.jtrangeo.2015.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, and D. Zrnić, 2020: Polarimetric relations for snow estimation—Radar verification. J. Appl. Meteor. Climatol., 59, 9911009, https://doi.org/10.1175/JAMC-D-19-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, and J. T. Carlin, 2021: Polarimetric relations for estimation of visibility in aggregated snow. J. Atmos. Oceanic Technol., 35, 805–822, https://doi.org/10.1175/JTECH-D-20-0088.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., and A. V. Ryzhkov, 2019: Estimation of melting-layer cooling rate from dual-polarization radar: Spectral bin model simulations. J. Appl. Meteor. Climatol., 58, 14851508, https://doi.org/10.1175/JAMC-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117, 10571080, https://doi.org/10.1002/qj.49711750109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., H. W. Lean, N. M. Roberts, and R. M. Forbes, 2000: Dynamical effects of ice sublimation in a frontal wave. Quart. J. Roy. Meteor. Soc., 126, 24052434, https://doi.org/10.1002/qj.49712656804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominé, F., T. Lauzier, A. Cabanes, L. Legagneux, W. F. Kuhs, K. Techmer, and T. Heinrichs, 2003: Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech., 62, 3348, https://doi.org/10.1002/jemt.10384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., R. G. Oraltay, and J. Hallett, 1994: Ice particle generation during evaporation. Atmos. Res., 32, 4553, https://doi.org/10.1016/0169-8095(94)90050-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. S. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, https://doi.org/10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, A. Bansemer, and C. H. Twohy, 2008: Determination of the combined ventilation factor and capacitance for ice crystal aggregates from airborne observations in a tropical anvil cloud. J. Atmos. Sci., 65, 376391, https://doi.org/10.1175/2007JAS2391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., and R. J. Hogan, 2006: Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modeling. Quart. J. Roy. Meteor. Soc., 132, 865883, https://doi.org/10.1256/qj.04.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frick, C., and H. Wernli, 2012: A case study of high-impact wet snowfall in northwest Germany (25–27 November 2005): Observations, dynamics, and forecast performance. Wea. Forecasting, 27, 12171234, https://doi.org/10.1175/WAF-D-11-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and M. Segal, 1999: Diabatic effects on late-winter cold front evolution: Conceptual and numerical model evaluations. Mon. Wea. Rev., 127, 15181537, https://doi.org/10.1175/1520-0493(1999)127<1518:DEOLWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, https://doi.org/10.1175/2007JAMC1634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne, 2015: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys., 15, 13 78713 802, https://doi.org/10.5194/acp-15-13787-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2020: A polarimetric radar analysis of ice microphysical processes in melting layers of winter storms using S-band quasi-vertical profiles. J. Appl. Meteor. Climatol., 59, 751767, https://doi.org/10.1175/JAMC-D-19-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, F. I., 1977: The effects of evaporation at the base of ice precipitation layers: Theory and radar observations. J. Atmos. Sci., 34, 651672, https://doi.org/10.1175/1520-0469(1977)034<0651:TEOEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendry, A., Y. M. M. Antar, and G. C. McCormick, 1987: On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Sci., 22, 3750, https://doi.org/10.1029/RS022i001p00037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homan, J., and L. W. Uccellini, 1987: Winter forecast problems associated with light to moderate snow events in the mid-Atlantic states on 14 and 22 February 1986. Wea. Forecasting, 2, 206228, https://doi.org/10.1175/1520-0434(1987)002<0206:WFPAWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jambon-Puillet, E., N. Shahidzadeh, and D. Bonn, 2018: Singular sublimation of ice and snow crystals. Nat. Commun., 9, 4191, https://doi.org/10.1038/s41467-018-06689-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., J. Verlinde, E. E. Clothiaux, K. Aydin, and C. Schmitt, 2019: Shapes and fall orientations of ice particle aggregates. J. Atmos. Sci., 76, 19031916, https://doi.org/10.1175/JAS-D-18-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L., H. Luce, and H. Hashiguchi, 2019: Midlevel cloud-base turbulence: Radar observations and models. J. Geophys. Res., 124, 32233245, https://doi.org/10.1029/2018JD029479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1995: Orientation model for particles in turbulence. J. Atmos. Sci., 52, 22762285, https://doi.org/10.1175/1520-0469(1995)052<2276:OMFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, https://doi.org/10.1029/1999GL900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.

    • Crossref
    • Export Citation
  • Korolev, A., and Coauthors, 2020: A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys., 20, 13911429, https://doi.org/10.5194/acp-20-1391-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudo, A., 2013: The generation of turbulence below midlevel cloud bases: The effect of cooling due to sublimation of snow. J. Appl. Meteor. Climatol., 52, 819833, https://doi.org/10.1175/JAMC-D-12-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudo, A., H. Luce, H. Hashiguchi, and R. Wilson, 2015: Convective instability underneath midlevel clouds: Comparisons between numerical simulations and VHF radar observations. J. Appl. Meteor. Climatol., 54, 22172227, https://doi.org/10.1175/JAMC-D-15-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., D. M. Tobin, M. Oue, and P. Kollias, 2020: Microphysical insights into ice pellet formation revealed by fully polarimetric Ka-band Doppler radar. J. Appl. Meteor. Climatol., 59, 15571580, https://doi.org/10.1175/JAMC-D-20-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazo, J. K., H. R. Hosterman, J. M. Sprague-Hilderbrand, and J. E. Adkins, 2020: Impact-based decision support services and the socioeconomic impacts of winter storms. Bull. Amer. Meteor. Soc., 101, E626E639, https://doi.org/10.1175/BAMS-D-18-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signatures of snowflake riming: A modeling study. Earth Space Sci., 2, 346358, https://doi.org/10.1002/2015EA000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, J., 2019: Guide to aircraft ground deicing. SAE Tech. Rep., 304 pp.

  • Leys, C., C. Ley, O. Klein, P. Bernard, and L. Licata, 2013: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol., 49, 764766, https://doi.org/10.1016/j.jesp.2013.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., D. Moisseev, and A. von Lerber, 2018: How does riming affect dual-polarization radar observations and snowflake shape? J. Geophys. Res., 123, 60706081, https://doi.org/10.1029/2017JD028186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, https://doi.org/10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Market, P. S., R. W. Przybylinski, and S. M. Rochette, 2006: The role of sublimational cooling in a late-season Midwestern snow event. Wea. Forecasting, 21, 364382, https://doi.org/10.1175/WAF919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Color in metal glasses and in metallic films. Philos. Trans. Roy. Soc., 203A, 385420, https://doi.org/10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1963: Use of the electrostatic analogy in studies of ice crystal growth. Z. Angew. Math. Phys., 14, 610620, https://doi.org/10.1007/BF01601268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, B., J. Andrey, S. Doherty, B. Doberstein, and J. Yessis, 2020: Winter storms and fall-related injuries: Is it safer to walk than to drive? Wea. Climate Soc., 12, 421434, https://doi.org/10.1175/WCAS-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584591, https://doi.org/10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohney, G., 2013: Motorists stranded for hours after fatal 50-car car pile-up in Pa. ABC News, 8 December 2013, https://abcnews.go.com/US/motorists-stranded-hours-fatal-50-car-pile-pa/story?id=21143139.

  • Moisseev, D. M., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role in snowflake aggregation. J. Geophys. Res., 120, 12 64412 655, https://doi.org/10.1002/2015JD023884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., A. Ryzhkov, and P. Zhang, 2020: Columnar vertical profile (CVP) methodology for validating polarimetric radar retrievals in ice using in situ aircraft measurements. J. Atmos. Oceanic Technol., 37, 16231642, https://doi.org/10.1175/JTECH-D-20-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information, 2014: National climate report for December 2013. NOAA, accessed 4 May 2021, https://www.ncdc.noaa.gov/sotc/national/201312.

  • National Weather Service, 1996: Aviation weather observations for Supplementary Aviation Weather Reporting Stations (SAWRS). NWS Observing Handbook 8, 107 pp., https://www.weather.gov/media/surface/WSOH8.pdf.

  • Nelson, J., 1998: Sublimation of ice crystals. J. Atmos. Sci., 55, 910919, https://doi.org/10.1175/1520-0469(1998)055<0910:SOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., and J. Hallett, 1989: Evaporation and melting of ice crystals: A laboratory study. Atmos. Res., 24, 169189, https://doi.org/10.1016/0169-8095(89)90044-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: The role of snow sublimation in frontogenesis. Quart. J. Roy. Meteor. Soc., 121, 763782, https://doi.org/10.1002/qj.49712152403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Qiu, L., and W. A. Nixon, 2008: Effects of adverse weather on traffic crashes: Systematic review and meta-analysis. Transp. Res. Rec., 2055, 139146, https://doi.org/10.3141/2055-16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., J. Vivekanandan, J. Cole, B. Myers, and C. Masters, 1999: The estimation of snowfall rate using visibility. J. Appl. Meteor., 38, 15421563, https://doi.org/10.1175/1520-0450(1999)038<1542:TEOSRU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 486 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, https://doi.org/10.1175/JAMC-D-12-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2018: Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J. Appl. Meteor. Climatol., 57, 333346, https://doi.org/10.1175/JAMC-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, https://doi.org/10.1175/JAMC-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. van Lier-Walqui, M. R. Kumjian, J. Y. Harrington, A. A. Jensen, and Y.-S. Chen, 2021: Radar-based Bayesian estimation of ice crystal growth parameters within a microphysical model. J. Atmos. Sci., 78, 549569, https://doi.org/10.1175/JAS-D-20-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., D. Moisseev, and A. von Lerber, 2016: How dual-polarization radar observations can be used to verify model representation of secondary ice. J. Geophys. Res., 121, 10 95410 970, https://doi.org/10.1002/2016JD025381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, https://doi.org/10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and M. R. Kumjian, 2017: Simulated polarimetric fields of ice vapor growth using the adapative habit model. Part I: Large-eddy simulations. Mon. Wea. Rev., 145, 22812302, https://doi.org/10.1175/MWR-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., and R. E. Stewart, 1997: Effects of melting on frontogenesis. J. Atmos. Sci., 54, 689702, https://doi.org/10.1175/1520-0469(1997)054<0689:EOMOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. M., and M. R. Kumjian, 2017: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea. Forecasting, 32, 20652082, https://doi.org/10.1175/WAF-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, P. Zhang, and C. Simmer, 2014: Investigations of backscatter differential phase in the melting layer. J. Appl. Meteor. Climatol., 53, 23442359, https://doi.org/10.1175/JAMC-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, B. Hickman, K. Mühlbauer, and C. Simmer, 2019: Polarimetric radar variables in the layers of melting and dendritic growth at X band—Implications for a nowcasting strategy in stratiform rain. J. Appl. Meteor. Climatol., 58, 24972522, https://doi.org/10.1175/JAMC-D-19-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigtländer, J., and Coauthors, 2018: Surface roughness during depositional growth and sublimation of ice crystals. Atmos. Chem. Phys., 18, 13 68713 702, https://doi.org/10.5194/acp-18-13687-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, 2010: Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds. Quart. J. Roy. Meteor. Soc., 136, 260276, https://doi.org/10.1002/qj.528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., R. J. Reed, and J. Honig, 1954: Atmospheric cooling by melting snow. Bull. Amer. Meteor. Soc., 35, 4851, https://doi.org/10.1175/1520-0477-35.2.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wolfensberger, D., D. Scipion, and A. Berne, 2016: Detection and characterization of the melting layer based on polarimetric radar scans. Quart. J. Roy. Meteor. Soc., 142, 108124, https://doi.org/10.1002/qj.2672.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 382 0 0
Full Text Views 3564 2779 637
PDF Downloads 835 188 15