Fine-Scale Characteristics of Summer Precipitation over Cang Mountain

Mengke Zhang aChinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Mengke Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4409-1859
,
Jian Li bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
cDali National Climate Observatory, Dali, China

Search for other papers by Jian Li in
Current site
Google Scholar
PubMed
Close
, and
Nina Li dNational Meteorological Center, Beijing, China

Search for other papers by Nina Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Fine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north–south orientation in Southwest China, are studied using station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, whereas long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Li, lij@cma.gov.cn

Abstract

Fine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north–south orientation in Southwest China, are studied using station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, whereas long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Li, lij@cma.gov.cn
Save
  • Anders, A. M., G. H. Roe, B. Hallet, D. R. Montgomery, N. Finnegan, and J. Putkonen, 2006: Spatial patterns of precipitation and topography in the Himalaya. Tectonics, Climate, and Landscape Evolution, GSA Special Papers, Vol. 398, Geological Society of America, 39–53, https://doi.org/10.1130/2006.2398(03).

    • Crossref
    • Export Citation
  • Anders, A. M., G. H. Roe, D. R. Durran, and J. R. Minder, 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8, 10681081, https://doi.org/10.1175/JHM610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoshima, F., A. Behrendt, H. S. Bauer, and V. Wulfmeyer, 2008: Statistics of convection initiation by use of Meteosat rapid scan data during the Convection and Orographically-induced Precipitation Study (COPS). Meteor. Z., 17, 921930, https://doi.org/10.1127/0941-2948/2008/0337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baopu, F., 1995: The effects of orography on precipitation. Bound.-Layer Meteor., 75, 189205, https://doi.org/10.1007/BF00721049.

  • Caine, N., 1980: The rainfall intensity–duration control of shallow landslides and debris flows. Geogr. Ann., 62, 2327, https://doi.org/10.1080/04353676.1980.11879996.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-S., and C.-Y. Lin, 1997: A preliminary study of the formation of precipitation systems under undisturbed conditions during TAMEX. Meteor. Atmos. Phys., 64, 83105, https://doi.org/10.1007/BF01044131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., W. Yuan, J. Li, and R. Yu, 2012: A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan Plateau. Adv. Atmos. Sci., 29, 193200, https://doi.org/10.1007/s00376-011-0218-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., Y. Wang, F. Gao, and X. Xiao, 2012: Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J. Geophys. Res., 117, D20115, https://doi.org/10.1029/2012JD018158.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Y. Wang, F. Gao, and X. Xiao, 2014: Diurnal evolution and distribution of warm-season convective storms in different prevailing wind regimes over contiguous North China. J. Geophys. Res. Atmos., 119, 27422763, https://doi.org/10.1002/2013JD021145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-L. Lin, 2005a: Orographic effects on a conditionally unstable flow over an idealized three-dimensional mesoscale mountain. Meteor. Atmos. Phys., 88, 121, https://doi.org/10.1007/s00703-003-0047-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-L. Lin, 2005b: Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J. Atmos. Sci., 62, 331350, https://doi.org/10.1175/JAS-3380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., K. Zhao, M. Xue, B. Zhou, X. Huang, and W. Xu, 2015: Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during mei-yu season. J. Geophys. Res. Atmos., 120, 12 55712 575, https://doi.org/10.1002/2015JD023872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L.-W., and C.-Y. Yu, 2019: Investigation of orographic precipitation over an isolated, three-dimensional complex topography with a dense gauge network, radar observations, and upslope model. J. Atmos. Sci., 76, 33873409, https://doi.org/10.1175/JAS-D-19-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Q., L. Gao, X. Zuo, and F. Zhong, 2019: Statistical analyses of spatial and temporal variabilities in total, daytime, and nighttime precipitation indices and of extreme dry/wet association with large-scale circulations of Southwest China, 1961–2016. Atmos. Res., 219, 166182, https://doi.org/10.1016/j.atmosres.2018.12.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, C.-M., and Y.-L. Lin, 2000: Effects of orography on the generation and propagation of mesoscale convective systems in a two-dimensional conditionally unstable flow. J. Atmos. Sci., 57, 38173837, https://doi.org/10.1175/1520-0469(2001)057<3817:EOOOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B., 2008: Two-dimensional idealized simulations of the impact of multiple windward ridges on orographic precipitation. J. Atmos. Sci., 65, 509523, https://doi.org/10.1175/2007JAS2305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosma, S., E. Richard, and F. Miniscloux, 2002: The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., 128, 7592, https://doi.org/10.1256/00359000260498798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahal, R. K., and S. Hasegawa, 2008: Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100, 429443, https://doi.org/10.1016/j.geomorph.2008.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davolio, S., A. Buzzi, and P. Malguzzi, 2009: Orographic triggering of long lived convection in three dimensions. Meteor. Atmos. Phys., 103, 3544, https://doi.org/10.1007/s00703-008-0332-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., K. Redmond, and D. Cayan, 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, https://doi.org/10.1175/JHM-390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, H., J. Hu, and D. He, 2013: Trends in precipitation over the low latitude highlands of Yunnan, China. J. Geogr. Sci., 23, 11071122, https://doi.org/10.1007/s11442-013-1066-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, A. B., and C. F. Bohren, 1992: Is virga rain that evaporates before reaching the ground? Mon. Wea. Rev., 120, 15651571, https://doi.org/10.1175/1520-0493(1992)120<1565:IVRTEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, P., K. Zhu, K. Zhao, B. Zhou, and M. Xue, 2019: Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains. Adv. Atmos. Sci., 36, 1528, https://doi.org/10.1007/s00376-018-8095-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., J. K. DeLay, M. A. Nullet, M. A. Scholl, and S. B. Gingerich, 2011: Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai‘i. Hydrol. Processes, 25, 438447, https://doi.org/10.1002/hyp.7738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and Coauthors, 2014: Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol., 34, 29402956, https://doi.org/10.1002/joc.3886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, H., J. Schmidli, W. Langhans, L. Schlemmer, and C. Schär, 2016: Impact of topography on the diurnal cycle of summertime moist convection in idealized simulations. Meteor. Z., 25, 181194, https://doi.org/10.1127/metz/2015/0653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP including updates on the ERA5 production status. ERA Rep. Series 27, 63 pp., https://www.ecmwf.int/node/18765.

  • Hill, F. F., K. A. Browning, and M. J. Bader, 1981: Radar and raingauge observations of orographic rain over south Wales. Quart. J. Roy. Meteor. Soc., 107, 643670, https://doi.org/10.1002/qj.49710745312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Houze, R. A., Jr., C. N. James, and S. Medina, 2010: Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. Quart. J. Roy. Meteor. Soc., 127, 25372558, https://doi.org/10.1002/qj.49712757804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., and Coauthors, 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 16571675, https://doi.org/10.1002/joc.3794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., J. Shu, X. Wang, X. Huang, and Q. Wu, 2017: The roles of convection over the western Maritime Continent and the Philippine Sea in interannual variability of summer rainfall over southwest China. J. Hydrometeor., 18, 20432056, https://doi.org/10.1175/JHM-D-16-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jou, B., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. Terr. Atmos. Ocean. Sci., 5, 169197, https://doi.org/10.3319/TAO.1994.5.2.169(TAMEX).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junquas, C., K. Takahashi, T. Condom, J. C. Espinoza, S. Chavez, J. E. Sicart, and T. Lebel, 2018: Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dyn., 50, 39954017, https://doi.org/10.1007/s00382-017-3858-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., S. Im, S. H. Lee, Y. Hong, and K. S. Cha, 2010: Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. J. Mt. Sci., 7, 8391, https://doi.org/10.1007/s11629-010-1072-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and R. B. Smith, 2009: Orographic precipitation in the tropics: Large-eddy simulations and theory. J. Atmos. Sci., 66, 25592578, https://doi.org/10.1175/2009JAS2990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, https://doi.org/10.1175/JCLI4082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-T., K.-Y. Ko, D.-I. Lee, C.-H. You, and Y.-C. Liou, 2018: Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun (2012). Atmos. Res., 201, 5871, https://doi.org/10.1016/j.atmosres.2017.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and R. Yu, 2014: Characteristics of cold season rainfall over the Yungui Plateau. J. Appl. Meteor. Climatol., 53, 17501759, https://doi.org/10.1175/JAMC-D-13-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, and T. Zhou, 2008: Seasonal variation of the diurnal cycle of rainfall in southern contiguous China. J. Climate, 21, 60366043, https://doi.org/10.1175/2008JCLI2188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., T. Chen, and N. Li, 2017: Diurnal variation of summer precipitation across the central Tian Shan mountains. J. Appl. Meteor. Climatol., 56, 15371550, https://doi.org/10.1175/JAMC-D-16-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., Y. Li, J. Chen, and X. Chen, 2016: Long-term change in precipitation structure over the karst area of Southwest China. Int. J. Climatol., 36, 24172434, https://doi.org/10.1002/joc.4501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze, 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129, 345371, https://doi.org/10.1256/qj.02.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a mountain ridge. J. Atmos. Sci., 66, 18651885, https://doi.org/10.1175/2009JAS2902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panosetti, D., S. Böing, L. Schlemmer, L. Schlemmer, and J. Schmidli, 2016: Idealized large-eddy and convection-resolving simulations of moist convection over mountainous terrain. J. Atmos. Sci., 73, 40214041, https://doi.org/10.1175/JAS-D-15-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panziera, L., and U. Germann, 2010: The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. Quart. J. Roy. Meteor. Soc., 136, 222238, https://doi.org/10.1002/qj.544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2010: Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation – Experiments in the inner region of the Great Smoky Mountains. J. Hydrol., 391, 141156, https://doi.org/10.1016/j.jhydrol.2010.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purnell, D. J., and D. J. Kirshbaum, 2018: Synoptic control over orographic precipitation distributions during the Olympics Mountains Experiment (OLYMPEX). Mon. Wea. Rev., 146, 10231044, https://doi.org/10.1175/MWR-D-17-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., X. Chen, G. Fu, J. Zhan, and X. Xue, 2010: Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol. Processes, 24, 37333744, https://doi.org/10.1002/hyp.7792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. Ferretti, 2003: Orographic effects on rainfall in MAP cases IOP 2b and IOP 8. Quart. J. Roy. Meteor. Soc., 129, 373390, https://doi.org/10.1256/qj.02.20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and S. K. Krueger, 1993: Toward an empirical definition of virga: Comments on “Is virga rain that evaporates before reaching the ground?” Mon. Wea. Rev., 121, 24262428, https://doi.org/10.1175/1520-0493(1993)121<2426:TAEDOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., 2013: Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and the diurnal cycle. Mon. Wea. Rev., 141, 24512466, https://doi.org/10.1175/MWR-D-12-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., and F. Kimura, 2005: Diurnal cycle of convective instability around the central mountains in Japan during the warm season. J. Atmos. Sci., 62, 16261636, https://doi.org/10.1175/JAS3423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sever, G., and Y. L. Lin, 2017: Dynamical and physical processes associated with orographic precipitation in a conditionally unstable uniform flow: Variation in basic wind speed. J. Atmos. Sci., 74, 449466, https://doi.org/10.1175/JAS-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, P., M. Wu, S. Qu, P. Jiang, X. Qiao, X. Chen, M. Zhou, and Z. Zhang, 2015: Spatial distribution and temporal trends in precipitation concentration indices for the Southwest China. Water Resour. Manage., 29, 39413955, https://doi.org/10.1007/s11269-015-1038-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., J. Li, G. Yang, and C. Yang, 2015: Comparative analysis on hourly precipitation features on the east and west sides of Yunling Diancang Mountain in Hengduan Mountains (in Chinese). Meteor. Mon., 41, 1724, https://doi.org/10.7519/j.issn.1000-0526.2015.01.002.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., H. Fujinami, T. Yasunari, and J. Matsumoto, 2010: Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina Peninsula. J. Geophys. Res., 115, D07109, https://doi.org/10.1029/2009JD012155.

    • Search Google Scholar
    • Export Citation
  • Tan, L., Y. Cai, Z. An, H. Cheng, C. Shen, Y. Gao, and R. L. Edwards, 2017: Decreasing monsoon precipitation in southwest China during the last 240 years associated with the warming of tropical ocean. Climate Dyn., 48, 17691778, https://doi.org/10.1007/s00382-016-3171-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tushaus, S. A., D. J. Posselt, M. M. Miglietta, R. Rotunno, and L. D. Monache, 2015: Bayesian exploration of multivariate orographic precipitation sensitivity for moist stable and neutral flows. Mon. Wea. Rev., 143, 44594475, https://doi.org/10.1175/MWR-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and G. Huang, 2015: Teleconnected influence of tropical northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China. Climate Dyn., 45, 25272539, https://doi.org/10.1007/s00382-015-2490-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, A., and J. Li, 2017: Integrated meteorological observation and research progress at Dali National Climate Observatory (in Chinese). Adv. Meteor. Sci. Technol., 7, 814.

    • Search Google Scholar
    • Export Citation
  • Xu, A., and J. Li, 2020: An overview of the integrated meteorological observations in complex terrain region at Dali National Climate Observatory, China. Atmos., 11, 279, https://doi.org/10.3390/atmos11030279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., J. Li, T. Qian, and H. Gu, 2020: A 100-m-scale modeling study of a gale event on the lee side of a long narrow mountain. J. Appl. Meteor. Climatol., 59, 2345, https://doi.org/10.1175/JAMC-D-19-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M., and Y. Ogura, 1988: Two-and three-dimensional modelling studies of the Big Thompson Storm. J. Atmos. Sci., 45, 37003722, https://doi.org/10.1175/1520-0469(1988)045<3700:TATDMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., W. Yuan, J. Li, and Y. Fu, 2010: Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China. Climate Dyn., 35, 567576, https://doi.org/10.1007/s00382-009-0568-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., H. Chen, and W. Sun, 2015: The definition and characteristics of regional rainfall events demonstrated by warm season precipitation over the Beijing Plain. J. Hydrometeor., 16, 396406, https://doi.org/10.1175/JHM-D-14-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., and M. Yang, 2020: Interannual variations in summer precipitation in southwest China: Anomalies in moisture transport and the role of the tropical Atlantic. J. Climate, 33, 59936007, https://doi.org/10.1175/JCLI-D-19-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., J. He, B. Wang, S. Wang, S. Li, W. Liu, and X. Ma, 2013a: Extreme drought changes in Southwest China from 1960 to 2009. J. Geogr. Sci., 23, 316, https://doi.org/10.1007/s11442-013-0989-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F. Jin, J. Zhao, L. Qi, and H. Ren, 2013b: The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J. Climate, 26, 83928405, https://doi.org/10.1175/JCLI-D-12-00851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and Y. Wang, 2006: Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J. Geophys. Res., 111, D17104, https://doi.org/10.1029/2006JD007243.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 189 0 0
Full Text Views 413 248 18
PDF Downloads 306 125 15