Micrometeorological Aspects of Spraying within a Surface Inversion

Warwick Grace aGrace Research Network, Adelaide, South Australia, Australia

Search for other papers by Warwick Grace in
Current site
Google Scholar
PubMed
Close
and
Graeme Tepper bMicroMeteorological Research and Educational Services, Melbourne, Victoria, Australia

Search for other papers by Graeme Tepper in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Pesticide applications during surface inversions can lead to spray drift causing severe damage up to several kilometers off-target. Current regulations in Australia prohibit spray application of certain agricultural chemicals when hazardous surface inversions exist. This severely limits spray opportunities. Surface inversions can be classified as weakly or strongly stable. In the weakly stable case, moderate to strong turbulent mixing is not supportive of long-distance concentrated drift. In the very stable case, weak turbulent mixing can support the transport of high concentrations of fine material over long distances. A review of the literature and our analyses indicate that if the turbulence, as measured by the standard deviation of the vertical wind speed σw, is greater than about 0.2 m s−1 then turbulence-driven mixing and dispersion is moderate to strong and conversely if σw is less than about 0.2 m s−1 then turbulence-driven mixing and dispersion is weaker (an order of magnitude). The concept of maximum downward heat flux as a natural division between the regimes is applied within Monin–Obukhov stability theory, and it is shown that the observed mean σw of 0.2 m s−1 aligns with the ridge line of maximum heat flux in stable conditions. The level of turbulence in the weakly stable regime is comparable to the turbulence typically observed in near-neutral conditions that are recommended under current guidelines as suitable for spraying and is therefore seen as an acceptable prerequisite to avoid nondispersive spraying conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Warwick Grace, wg@graceresearch.com

Abstract

Pesticide applications during surface inversions can lead to spray drift causing severe damage up to several kilometers off-target. Current regulations in Australia prohibit spray application of certain agricultural chemicals when hazardous surface inversions exist. This severely limits spray opportunities. Surface inversions can be classified as weakly or strongly stable. In the weakly stable case, moderate to strong turbulent mixing is not supportive of long-distance concentrated drift. In the very stable case, weak turbulent mixing can support the transport of high concentrations of fine material over long distances. A review of the literature and our analyses indicate that if the turbulence, as measured by the standard deviation of the vertical wind speed σw, is greater than about 0.2 m s−1 then turbulence-driven mixing and dispersion is moderate to strong and conversely if σw is less than about 0.2 m s−1 then turbulence-driven mixing and dispersion is weaker (an order of magnitude). The concept of maximum downward heat flux as a natural division between the regimes is applied within Monin–Obukhov stability theory, and it is shown that the observed mean σw of 0.2 m s−1 aligns with the ridge line of maximum heat flux in stable conditions. The level of turbulence in the weakly stable regime is comparable to the turbulence typically observed in near-neutral conditions that are recommended under current guidelines as suitable for spraying and is therefore seen as an acceptable prerequisite to avoid nondispersive spraying conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Warwick Grace, wg@graceresearch.com
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2003: In the core of the night—Effects of intermittent mixing on a horizontally heterogeneous surface. Bound.-Layer Meteor., 106, 133, https://doi.org/10.1023/A:1020824109575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., O. L. L. Moraes, D. R. Fitzjarrald, R. K. Sakai, and L. Mahrt, 2007: Turbulent carbon exchange in very stable conditions. Bound.-Layer Meteor., 125, 4961, https://doi.org/10.1007/s10546-007-9193-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiros, and G. A. Degazia, 2015: Contrasting structures between decoupled and coupled states of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693702, https://doi.org/10.1002/qj.2693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akesson, N. B., and W. E. Yates, 1981: Precision spraying developments for pesticides. Proc. Florida Conf. on Pesticide Application Technology, Gainesville, FL, University of Florida, 183–194.

  • Arya, S. P., 2001: Introduction to Micrometeorology. 2nd ed. Academic Press, 420 pp.

  • Baas, P., B. J. H. van de Weil, S. J. A. van der Linden, and F. C. Bosveld, 2018: From near-neutral to strongly stratified: Adequately modelling the clear-sky nocturnal boundary layer at Cabauw. Bound.-Layer Meteor., 166, 217238, https://doi.org/10.1007/s10546-017-0304-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bache, D. H., and D. R. Johnstone, 1992: Microclimate and Spray Dispersion. Ellis Horwood, 238 pp.

  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. L. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683090, https://doi.org/10.1175/JAS4002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bish, M. D., P. E. Guinan, and K. W. Bradley, 2019a: Inversion climatology in high-production agricultural regions of Missouri and implications for pesticide applications. J. Appl. Meteor., 58, 19731992, https://doi.org/10.1175/JAMC-D-18-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bish, M. D., T. S. Farrell, R. N. Lerch, and K. W. Bradley, 2019b: Dicamba losses to air after applications to soybean under stable and nonstable atmospheric conditions. J. Environ. Qual., 48, 16751682, https://doi.org/10.2134/jeq2019.05.0197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D., P. M. Klein, S. C. Arms, and A. Shapiro, 2009: Variability of surface air temperature over gently sloped terrain. J. Appl. Meteor. Climatol., 48, 11171141, https://doi.org/10.1175/2009JAMC1933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., W. G. Blumberg, P. M. Klein, and P. B. Chilson, 2015: Thermodynamic and turbulence characteristics of the southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor., 157, 401420, https://doi.org/10.1007/s10546-015-0072-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. H., 1982: Evaporation into the Atmosphere: Theory, History and Applications. D. Reidel, 299 pp.

  • Crabbe, R. S., M. McCooeye, and R. E. Mickle, 1994: The influence of atmospheric stability on wind drift from ultra-low volume aerial forest spray applications. J. Appl. Meteor. Climatol., 33, 500507, https://doi.org/10.1175/1520-0450(1994)033<0500:TIOASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSIRO, 2002: Spray Drift Management: Principles, Strategies and Supporting Information. CSIRO Publishing, 83 pp.

  • Dexter, A. G., 1995: Herbicide spray drift. North Dakota State University Extension Service Doc., 11 pp.

  • Foken, T., 2017: Micrometeorology. 2nd ed. Springer-Verlag, 362 pp.

  • Fritz, B. K., 2006: Meteorological effects on deposition and drift of aerially applied sprays. Trans. ASABE, 49, 12951301, https://doi.org/10.13031/2013.22038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, B. K., W. C. Hoffmann, Y. Lan, S. J. Thomson, and Y. Huang, 2008: Low-level atmospheric temperature inversions and atmospheric stability: Characteristics and impacts on aerial applications. Agric. Eng. Int., X, PM 08 001, https://cigrjournal.org/index.php/Ejounral/article/view/1234/1091.

    • Search Google Scholar
    • Export Citation
  • Fritz, B. K., W. C. Hoffmann, W. E. Bagley, and A. Hewitt, 2011: Field scale evaluation of spray drift reduction technologies from ground and aerial application systems. J. ASTM Int., 8, 111, https://doi.org/10.1520/JAI103457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L. Andreas, and P. S. Guest, 2005: Stable boundary layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, https://doi.org/10.1007/s10546-004-2729-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerra, V. S., O. C. Acevedo, L. E. Medeiros, P. E. S. Oliveira, and D. M. Santos, 2018: Small-scale horizontal variability of mean and turbulent quantities in the nocturnal boundary layer. Bound.-Layer Meteor., 169, 395411, https://doi.org/10.1007/s10546-018-0381-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, A. J., D. L. Valcore, and T. Barry, 2001: Analyses of equipment, meteorology and other factors affecting drift from applications of sprays by ground rig sprayers. Pesticide Formulations and Applications Systems, A. K. Viets, R. S. Tann, and J. C. Mueninghoff, Eds., Vol. 20, American Society for Testing and Materials, 44–56.

    • Crossref
    • Export Citation
  • Hewitt, A. J., D. R. Johnson, J. D. Fish, C. G. Hermansky, and D. L. Valcore, 2002: Development of the spray drift task force database for aerial applications. Environ. Toxicol. Chem., 21, 648658, https://doi.org/10.1002/etc.5620210326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2010: Common microfronts and other solitary events in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 136, 17121722, https://doi.org/10.1002/qj.694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2006: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, https://doi.org/10.1023/A:1001765727956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary-layers regimes. Bound.-Layer Meteor., 88, 255278, https://doi.org/10.1023/A:1001171313493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., C. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteor., 147, 179199, https://doi.org/10.1007/s10546-012-9782-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, and D. Stauffer, 2015: Dependence of turbulent velocities on wind speed and stratification. Bound.-Layer Meteor., 155, 5571, https://doi.org/10.1007/s10546-014-9992-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majewski, M. S., and P. D. Capel, 1995: Pesticides in the atmosphere: Distribution, trends and governing factors. USGS Open-File Rep. 94-506, 191 pp., https://doi.org/10.3133/ofr94506.

    • Crossref
    • Export Citation
  • Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396, https://doi.org/10.1007/BF00712379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645655, https://doi.org/10.1175/JAS3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. K., T. E. Stoughton, W. E. Steinke, E. W. Huddleston, and J. B. Ross, 2000: Atmospheric stability effects on pesticide drift from an irrigated orchard. Trans. ASAE, 43, 10571066, https://doi.org/10.13031/2013.2998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., T. M. Rees, Y. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, https://doi.org/10.1175/JAS-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1, MIT Press, 769 pp.

  • Mortarini, L., M. Stefanello, G. Degrazia, D. Roberts, S. T. Castelli, and D. Anfossi, 2016: Characterization of wind meandering in low-wind-speed conditions. Bound.-Layer Meteor., 161, 165182, https://doi.org/10.1007/s10546-016-0165-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., D. Cava, U. Giostra, F. D. Costa, G. Degrazia, D. Anfossi, and O. Acevedo, 2019: Horizontal meandering as a distinctive feature of the stable boundary layer. J. Atmos. Sci., 76, 30293046, https://doi.org/10.1175/JAS-D-18-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munn, R. E., 1966: Descriptive Micrometeorology. Academic Press, 245 pp.

  • Pahlow, M., M. B. Parlange, and F. Porte-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225248, https://doi.org/10.1023/A:1018909000098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pennypacker, S., and D. Baldocchi, 2016: Seeing the fields and forests: Application of surface-layer theory and flux-tower data to calculating vegetation canopy height. Bound.-Layer Meteor., 158, 165182, https://doi.org/10.1007/s10546-015-0090-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., B. Gaudet, A. Deng, S. Richardson, D. R. Stauffer, and L. Mahrt, 2008: Evaluation of meanderlike wind variance in high-resolution WRF model simulations of the stable nocturnal boundary layer. 10th Conf. on Atmospheric Chemistry, New Orleans, LA, Amer. Meteor. Soc., J3.1, https://ams.confex.com/ams/pdfpapers/135158.pdf.

  • Sorbjan, Z., 2006: Local structures of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63, 15261537, https://doi.org/10.1175/JAS3704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R., 2000: Meteorology for Scientists and Engineers. 2nd ed. Brooks/Cole, 502 pp.

  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tampieri, F., 2017: Turbulence and Dispersion in the Planetary Boundary Layer. Springer, 241 pp.

  • Thistle, H. W., 2004: Meteorological concepts in the drift of pesticides. Proc. Int. Conf. on Pesticide Application for Drift Management, Pullman, WA, Washington State University Extension, 156–162.

  • Thomson, S. J., Y. Huang, and B. K. Fritz, 2017: Atmospheric stability intervals influencing the potential for off-target movement of spray in aerial application. Int. J. Agric. Sci. Technol., 5, 138, https://doi.org/10.12783/ijast.2017.0501.01.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., and Coauthors, 2017: Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci., 74, 10571073, https://doi.org/10.1175/JAS-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., J. M. M. Donda, J. H. Clercx, F. C. Bosveld, and B. J. H. van de Wiel, 2015: Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci., 72, 15181532, https://doi.org/10.1175/JAS-D-14-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., M. Scheffer, H. J. H. Clercx, and B. J. H. van de Weil, 2017: Early warning signals for regime transition in the stable boundary layer: A model study. Bound.-Layer Meteor., 162, 283306, https://doi.org/10.1007/s10546-016-0199-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2007: Observations of the cross-wind velocity variance in the stable boundary layer. Environ. Fluid Mech., 7, 5571, https://doi.org/10.1007/s10652-006-9010-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. G., S. Chambers, and A. Griffiths, 2013: Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Bound.-Layer Meteor., 149, 381402, https://doi.org/10.1007/s10546-013-9849-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, N., I. P. Craig, G. J. Dorr, and B. Young, 2001: Spray drift pesticides arising from aerial application in cotton. J. Environ. Qual., 3, 697701, https://doi.org/10.2134/jeq2001.303697x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Yates, W. E., N. B. Akesson, and H. H. Coutts, 1966: Evaluation of drift residues from aerial applications. Trans. ASAE, 9, 0389–0393, https://doi.org/10.13031/2013.39988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yates, W. E., N. B. Akesson, and H. H. Coutts, 1967: Drift hazards related to ultra-low-volume and diluted sprays applied by agricultural aircraft. Trans. ASAE, 10, 0628–0638, https://doi.org/10.13031/2013.39747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yates, W. E., N. B. Akesson, and R. E. Cowden, 1974: Criteria for minimizing drift residues on crops downwind from aerial applications. Trans. ASAE, 17, 0627–0632, https://doi.org/10.13031/2013.36925.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 409 0 0
Full Text Views 358 198 5
PDF Downloads 320 161 3