Trends and Variability of North American Cool-Season Extratropical Cyclones: 1979–2019

Robert Fritzen aDepartment of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois

Search for other papers by Robert Fritzen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7766-4150
,
Victoria Lang bDepartment of Atmospheric Science, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Victoria Lang in
Current site
Google Scholar
PubMed
Close
, and
Vittorio A. Gensini aDepartment of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois

Search for other papers by Vittorio A. Gensini in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6362-9197
Restricted access

Abstract

Extratropical cyclones are the primary driver of sensible weather conditions across the midlatitudes of North America, often generating various types of precipitation, gusty nonconvective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient resulting from anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified on the basis of their genesis location. In addition, bomb cyclones—extratropical cyclones that recorded a latitude-normalized pressure fall of 24 hPa in 24 h—were identified and stratified for additional analysis. Cyclone life span across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈270 cyclones were tracked across the analysis domain per year, with an average of ≈18 yr−1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 per year during 1979–99 to 250 per year during 2000–19. Decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah Mountain Range. No significant interannual or spatial trends were noted in the frequency of bomb cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Fritzen, rfritzen1@niu.edu

Abstract

Extratropical cyclones are the primary driver of sensible weather conditions across the midlatitudes of North America, often generating various types of precipitation, gusty nonconvective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient resulting from anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified on the basis of their genesis location. In addition, bomb cyclones—extratropical cyclones that recorded a latitude-normalized pressure fall of 24 hPa in 24 h—were identified and stratified for additional analysis. Cyclone life span across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈270 cyclones were tracked across the analysis domain per year, with an average of ≈18 yr−1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 per year during 1979–99 to 250 per year during 2000–19. Decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah Mountain Range. No significant interannual or spatial trends were noted in the frequency of bomb cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Fritzen, rfritzen1@niu.edu
Save
  • Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 64686484, https://doi.org/10.1175/2010JCLI3437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, P., B. U. Neeman, and Y. Shay-El, 1990: Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus, 42A, 6577, https://doi.org/10.3402/tellusa.v42i1.11860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D., K. I. Hodges, and B. J. Hoskins, 2003: Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon. Wea. Rev., 131, 565573, https://doi.org/10.1175/1520-0493(2003)131<0565:SOFBAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attard, H. E., and A. L. Lang, 2019: The impact of tropospheric and stratospheric tropical variability on the location, frequency, and duration of cool-season extratropical synoptic events. Mon. Wea. Rev., 147, 519542, https://doi.org/10.1175/MWR-D-18-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 1992: A model of Rocky Mountain lee cyclogenesis. J. Atmos. Sci., 49, 15101522, https://doi.org/10.1175/1520-0469(1992)049<1510:AMORML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Befort, D. J., S. Wild, T. Kruschke, U. Ulbrich, and G. C. Leckebusch, 2016: Different long-term trends of extra-tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmos. Sci. Lett., 17, 586595, https://doi.org/10.1002/asl.694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, https://doi.org/10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

  • Bentley, A. M., L. F. Bosart, and D. Keyser, 2019: A climatology of extratropical cyclones leading to extreme weather events over central and eastern North America. Mon. Wea. Rev., 147, 14711490, https://doi.org/10.1175/MWR-D-18-0453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhardt, J. E., and A. T. DeGaetano, 2012: Meteorological factors affecting the speed of movement and related impacts of extratropical cyclones along the US East Coast. Nat. Hazards, 61, 14631472, https://doi.org/10.1007/s11069-011-0078-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blender, R., and M. Schubert, 2000: Cyclone tracking in different spatial and temporal resolutions. Mon. Wea. Rev., 128, 377384, https://doi.org/10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, T. A., and J. R. Gyakum, 1993: A diagnostic study of cyclogenesis in the western North Pacific Ocean. Mon. Wea. Rev., 121, 6575, https://doi.org/10.1175/1520-0493(1993)121<0065:ADSOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnell, R., and C. Senior, 1998: Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Climate Dyn., 14, 369383, https://doi.org/10.1007/s003820050229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, D., J. J. Noel, and L. H. Maze, 1995: Determining cyclone frequencies using equal-area circles. Mon. Wea. Rev., 123, 22852294, https://doi.org/10.1175/1520-0493(1995)123<2285:DCFUEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 30293035, https://doi.org/10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, Y.-S., and E. R. Reinelt, 1973: On cyclogenesis in the lee of the Canadian Rocky Mountains. Arch. Meteor. Geophys. Bioklimatol., 22A, 205226, https://doi.org/10.1007/BF02247545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, Y.-S., K. D. Hage, and E. R. Reinelt, 1976: On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian mountains. Mon. Wea. Rev., 104, 879891, https://doi.org/10.1175/1520-0493(1976)104<0879:OLCAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. F. Booth, and E. K. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr. Climate Change Rep., 1, 125143, https://doi.org/10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danard, M. B., and A. C. Mcmillan, 1974: Further numerical studies of the effects of the Great Lakes on winter cyclones. Mon. Wea. Rev., 102, 166175, https://doi.org/10.1175/1520-0493(1974)102<0166:FNSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, https://doi.org/10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, https://doi.org/10.5194/nhess-9-405-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S.-W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, https://doi.org/10.1175/MWR-D-12-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809, https://doi.org/10.1007/s003820000145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific. Mon. Wea. Rev., 128, 851863, https://doi.org/10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 11411155, https://doi.org/10.1175/1520-0493(1989)117<1141:NPCSSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, B. P., 1981: Cyclone occurrence mapping: Equal area or raw frequencies? Mon. Wea. Rev., 109, 168172, https://doi.org/10.1175/1520-0493(1981)109<0168:COMEAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, https://doi.org/10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932, https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037, https://doi.org/10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 552 pp.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., J. M. Melillo, T. C. Peterson, and S. J. Hassol, 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 189 pp.

  • Klotzbach, P. J., E. C. Oliver, R. D. Leeper, and C. J. Schreck III, 2016: The relationship between the Madden–Julian oscillation (MJO) and southeastern New England snowfall. Mon. Wea. Rev., 144, 13551362, https://doi.org/10.1175/MWR-D-15-0434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • König, W., R. Sausen, and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6, 22172231, https://doi.org/10.1175/1520-0442(1993)006<2217:OIOCIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 345 pp.

    • Crossref
    • Export Citation
  • Lamb, P. J., and S. A. Changnon Jr., 1981: On the “best” temperature and precipitation normals: The Illinois situation. J. Appl. Meteor., 20, 13831390, https://doi.org/10.1175/1520-0450(1981)020<1383:OTTAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and E. Kalnay, 1990: Comparison of observed and simulated cyclone frequency distribution as determined by an objective method. Atmósfera, 3, 5771.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2013: Mid-Latitude Atmospheric Dynamics: A First Course. John Wiley and Sons, 336 pp.

  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, https://doi.org/10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., 2011: Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Climate Dyn., 37, 13991425, https://doi.org/10.1007/s00382-010-0916-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part II: Application to January and July general circulation model simulations. Aust. Meteor. Mag., 39, 167180.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., S. Zacharias, A. H. Fink, G. C. Leckebusch, and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32, 711737, https://doi.org/10.1007/s00382-008-0396-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pnevmatikos, J., and B. Katsoulis, 2006: The changing rainfall regime in Greece and its impact on climatological means. Meteor. Appl., 13, 331345, https://doi.org/10.1017/S1350482706002350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raible, C., P. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, https://doi.org/10.1175/2007MWR2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, M., M. L. Liberato, P. Lionello, J. G. Pinto, S. Salon, and S. Ulbrich, 2019: A global climatology of explosive cyclones using a multi-tracking approach. Tellus, 71A, 1611340, https://doi.org/10.1080/16000870.2019.1611340.

    • Crossref
    • Export Citation
  • Reed, R. J., M. D. Albright, A. J. Sammons, and P. Undén, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Wea. Forecasting, 3, 217229, https://doi.org/10.1175/1520-0434(1988)003<0217:TROLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1974: Frequencies of cyclones and cyclogenesis for North America, 1951–1970. Mon. Wea. Rev., 102, 861868, https://doi.org/10.1175/1520-0493(1974)102<0861:FOCACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1979: Trends in the frequencies of cyclone activity over North America. Mon. Wea. Rev., 107, 16841688, https://doi.org/10.1175/1520-0493(1979)107<1684:TITFOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and M. R. Schumann, 2011: Physical processes governing the rapid deepening tail of maritime cyclogenesis. Mon. Wea. Rev., 139, 27762789, https://doi.org/10.1175/MWR-D-10-05002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, E. M., and P. J. Smith, 1980: A synoptic analysis of the 25–26 January 1978 blizzard cyclone in the central United States. Bull. Amer. Meteor. Soc., 61, 453460, https://doi.org/10.1175/1520-0477(1980)061<0453:FOFASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. W., and F. A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, https://doi.org/10.1016/S0380-1330(96)71006-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1960: On some convergence properties of U-statistics. Calcutta Stat. Assoc. Bull., 10 (1–2), 118, https://doi.org/10.1177/0008068319600101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sickmöller, M., R. Blender, and K. Fraedrich, 2000: Observed winter cyclone tracks in the Northern Hemisphere in re-analysed ECMWF data. Quart. J. Roy. Meteor. Soc., 126, 591620, https://doi.org/10.1002/qj.49712656311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, https://doi.org/10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., and I. G. Watterson, 1999: Objective assessment of extratropical weather systems in simulated climates. J. Climate, 12, 34673485, https://doi.org/10.1175/1520-0442(1999)012<3467:OAOEWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and J. M. Fritsch, 1994: Lake-aggregate mesoscale disturbances. Part II: A case study of the effects on regional and synoptic-scale weather systems. Bull. Amer. Meteor. Soc., 75, 17931812, https://doi.org/10.1175/1520-0477(1994)075<1793:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2017: The poleward shift of storm tracks under global warming: A Lagrangian perspective. Geophys. Res. Lett., 44, 10 66610 674, https://doi.org/10.1002/2017GL073633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis, 3; confidence regions for the parameters of polynomial regression equations. Indag. Math., 1, 467482.

    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., 1973: The role of cumulus convection in the development of extratropical cyclones. Mon. Wea. Rev., 101, 573593, https://doi.org/10.1175/1520-0493(1973)101<0573:TROCCI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112, 3155, https://doi.org/10.1175/1520-0493(1984)112<0031:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, https://doi.org/10.1007/s00704-008-0083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Amer. Meteor. Soc., 95, 377386, https://doi.org/10.1175/BAMS-D-12-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, https://doi.org/10.1175/JCLI3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and Coauthors, 2011: Trends and low-frequency variability of storminess over western Europe, 1878–2007. Climate Dyn., 37, 23552371, https://doi.org/10.1007/s00382-011-1107-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. Compo, V. Swail, F. Zwiers, R. Allan, and P. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., 40, 27752800, https://doi.org/10.1007/s00382-012-1450-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whittaker, L. M., and L. H. Horn, 1981: Geographical and seasonal distribution of North American cyclogenesis, 1958–1977. Mon. Wea. Rev., 109, 23122322, https://doi.org/10.1175/1520-0493(1981)109<2312:GASDON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1971: Climatological normals (CLINO) for climate and climate ship stations for the period 1931–1960. WMO/OMM Tech. Doc. 117, 52 pp.

  • WMO, 1989: Calculation of monthly and annual 30-year standard normals. WMO Tech. Doc. 341, 11 pp.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiou, P., and M. Nogaj, 2004: Extreme climatic events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett., 31, L07202, https://doi.org/10.1029/2003GL019119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zick, S. E., and C. J. Matyas, 2015: Tropical cyclones in the North American Regional Reanalysis: An assessment of spatial biases in location, intensity, and structure. J. Geophys. Res. Atmos., 120, 16511669, https://doi.org/10.1002/2014JD022417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, https://doi.org/10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., and S. K. Gulev, 2002: Improving the accuracy of mapping cyclone numbers and frequencies. Mon. Wea. Rev., 130, 748759, https://doi.org/10.1175/1520-0493(2002)130<0748:ITAOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1169 0 0
Full Text Views 1870 969 91
PDF Downloads 1161 578 34