A Statistical Analysis of Extreme Hot Characteristics and Their Relationships with Urbanization in Southern China during 1971–2020

Huanyan Gao aState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
bKey Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
cAviation Meteorological Center, Air Traffic Management Bureau, Civil Aviation Administration of China, Beijing, China

Search for other papers by Huanyan Gao in
Current site
Google Scholar
PubMed
Close
,
Yali Luo aState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
bKey Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yali Luo in
Current site
Google Scholar
PubMed
Close
,
Xiaoling Jiang dNational Institute of Natural Hazards, Beijing, China

Search for other papers by Xiaoling Jiang in
Current site
Google Scholar
PubMed
Close
,
Da-Lin Zhang eDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
,
Yang Chen aState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yang Chen in
Current site
Google Scholar
PubMed
Close
,
Yongqing Wang bKey Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yongqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Xinyong Shen bKey Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
fSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Xinyong Shen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the total days, mean duration, and intensity of extreme hot events over southern China during the 1971–2020 warm seasons are analyzed on the basis of daily maximum and minimum temperatures, by comparing the newly proposed independent hot day (IHD), independent warm night (IWN), and compound extreme (CMPD; i.e., the continuous occurrences of hot days and hot nights) with the traditionally defined hot day and warm night. Relationships between the hot extremes and urbanization are explored with 1-km-resolution population density data. Results show obvious differences in the spatial distributions among IHD, IWN, and CMPD over southern China. Positive correlations of 0.43, 0.41, and 0.37 are found between the population density and the total days, mean duration, and mean intensity of CMPD, respectively, which are qualitatively similar to those using the traditional hot days and warm nights. In contrast, negative correlations between the IHD and IWN indices and the population density are found, because those indices are more apparent over rural areas. Moreover, total days, mean duration, and mean intensity of CMPD increase significantly, with trends of approximately 103%, 21%, and 38% decade−1, respectively, during the rapid urbanization period from the mid-1990s to 2020, which are about 4.9, 2.1, and 2.4 times their counterparts from 1970 to the mid-1990s, and less significant and smaller differences between the two eras are found in IHD and IWN. These results will provide a new scientific basis for evaluating climate models of hot extremes in southern China and have important implications for the other urbanized regions as well.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Yali Luo, ylluo@cma.gov.cn, yali.luo@qq.com; Yongqing Wang, yongqing@nuist.edu.cn

Abstract

In this study, the total days, mean duration, and intensity of extreme hot events over southern China during the 1971–2020 warm seasons are analyzed on the basis of daily maximum and minimum temperatures, by comparing the newly proposed independent hot day (IHD), independent warm night (IWN), and compound extreme (CMPD; i.e., the continuous occurrences of hot days and hot nights) with the traditionally defined hot day and warm night. Relationships between the hot extremes and urbanization are explored with 1-km-resolution population density data. Results show obvious differences in the spatial distributions among IHD, IWN, and CMPD over southern China. Positive correlations of 0.43, 0.41, and 0.37 are found between the population density and the total days, mean duration, and mean intensity of CMPD, respectively, which are qualitatively similar to those using the traditional hot days and warm nights. In contrast, negative correlations between the IHD and IWN indices and the population density are found, because those indices are more apparent over rural areas. Moreover, total days, mean duration, and mean intensity of CMPD increase significantly, with trends of approximately 103%, 21%, and 38% decade−1, respectively, during the rapid urbanization period from the mid-1990s to 2020, which are about 4.9, 2.1, and 2.4 times their counterparts from 1970 to the mid-1990s, and less significant and smaller differences between the two eras are found in IHD and IWN. These results will provide a new scientific basis for evaluating climate models of hot extremes in southern China and have important implications for the other urbanized regions as well.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Yali Luo, ylluo@cma.gov.cn, yali.luo@qq.com; Yongqing Wang, yongqing@nuist.edu.cn
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, https://doi.org/10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, H., D. Xiao, B. Wang, D. L. Liu, P. Feng, and J. Tang, 2020: Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China plain. Int. J. Climatol., 41, E171E186, https://doi.org/10.1002/joc.6674.

    • Search Google Scholar
    • Export Citation
  • Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z. Yan, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 58305844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 50965103, https://doi.org/10.1002/2016GL072281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., P. Zhai, and B. Zhou, 2018: Detectable impacts of the past half-degree global warming on summertime hot extremes in China. Geophys. Res. Lett., 45, 71307139, https://doi.org/10.1029/2018GL079216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croitoru, A. E., A. Piticar, A.-F. Ciupertea, and C. F. Roşca, 2016: Changes in heat waves indices in Romania over the period 1961–2015. Global Planet. Change, 146, 109121, https://doi.org/10.1016/j.gloplacha.2016.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112, D15103, https://doi.org/10.1029/2007JD008510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and M. Ashfaq, 2010: Intensification of hot extremes in the United States. Geophys. Res. Lett., 37, L15701, https://doi.org/10.1029/2010GL043888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., W. Qian, and Z. Yan, 2010: Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol., 30, 14521462, https://doi.org/10.1002/joc.1989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and C. Tebaldi, 2012: Increasing prevalence of extreme summer temperatures in the U.S. Climatic Change, 111, 487495, https://doi.org/10.1007/s10584-012-0396-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graczyk, D., I. Pińskwar, Z. W. Kundzewicz, Ø. Hov, E. J. Førland, M. Szwed, and A. Choryński, 2017: The heat goes on—Changes in indices of hot extremes in Poland. Theor. Appl. Climatol., 129, 459471, https://doi.org/10.1007/s00704-016-1786-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1991: An evapotranspiration-interception model for urban areas. Water Resour. Res., 27, 17391755, https://doi.org/10.1029/91WR00557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hao, Z., F. Hao, and V. P. Singh, 2018: Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett., 13, 124022, https://doi.org/10.1088/1748-9326/aaee96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, F., Z. H. Wu, J. P. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nat. Climate Change, 4, 462466, https://doi.org/10.1038/nclimate2223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Luo, D.-L. Zhang, and M. Wu, 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River delta. J. Climate, 33, 58095826, https://doi.org/10.1175/JCLI-D-19-0884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenney, W. L., D. H. Craighead, and L. M. Alexander, 2014: Heat waves, aging, and human cardiovascular health. Med. Sci. Sports Exercise, 46, 18911899, https://doi.org/10.1249/MSS.0000000000000325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kothawale, D. R., J. V. Revadekar, and K. Rupa Kumar, 2010: Recent trends in pre-monsoon daily temperature extremes over India. J. Earth Syst. Sci., 119, 5165, https://doi.org/10.1007/s12040-010-0008-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, W., 2020: 70 years of urban expansion across China: Trajectory, pattern, and national policies. Sci. Bull., 65, 19701974, https://doi.org/10.1016/j.scib.2020.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., 2019: Empirical analysis of the effects of population concentration and urban agglomeration economic growth (in Chinese). J. Henan Univ., 59, 4352.

    • Search Google Scholar
    • Export Citation
  • Li, X., Q. You, G. Ren, S. Wang, Y. Zhang, J. Yang, and G. Zheng, 2019: Concurrent droughts and hot extremes in northwest China from 1961 to 2017. Int. J. Climatol., 39, 21862196, https://doi.org/10.1002/joc.5944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W. Fan, L. Wang, M. Luo, R. Yao, S. Wang, and L. Wang, 2020: Effects of urban expansion on atmospheric humidity in Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ., 759, 144305, https://doi.org/10.1016/j.scitotenv.2020.144305.

    • Search Google Scholar
    • Export Citation
  • Li, Y., 2013: Impact of urbanization in different regions of eastern China on precipitation and its simulation (in Chinese). M.S. thesis, School of Atmospheric Science, Nanjing University of Information Science and Technology, 77 pp.

  • Li, Y., L. Wang, M. Liu, G. Zhao, T. He, and Q. Mao, 2019: Associated determinants of surface urban heat islands across 1449 cities in China. Adv. Meteor., 2019, 4892714, https://doi.org/10.1155/2019/4892714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Ding, and Y. Liu, 2020: Mechanisms for regional compound hot extremes in the mid-lower reaches of the Yangtze River. Int. J. Climatol., 41, 12921304, https://doi.org/10.1002/joc.6808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., 2015: Spatial and temporal variation of climate extremes in southwestern China. Study on Climate Change in Southwestern China, Springer, 101–136.

    • Crossref
    • Export Citation
  • Liao, W., and Coauthors, 2018: Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett., 45, 11 31011 317, https://doi.org/10.1029/2018GL079679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., E. Ge, X. Liu, W. Liao, and M. Luo, 2018: Urbanization effects on heat waves in Fujian Province, Southeast China. Atmos. Res., 210, 123132, https://doi.org/10.1016/j.atmosres.2018.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Q. Tang, X. Zhang, and S. Sun, 2018: Projected changes in extreme high temperature and heat stress in China. J. Meteor. Res., 32, 351366, https://doi.org/10.1007/s13351-018-7120-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N. Lau, 2018: Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophys. Res. Lett., 45, 13 06013 069, https://doi.org/10.1029/2018GL080306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N. Lau, 2019: Amplifying effect of ENSO on heat waves in China. Climate Dyn., 52, 32773289, https://doi.org/10.1007/s00382-018-4322-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, https://doi.org/10.1029/2010GL042845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103121, https://doi.org/10.1007/s13143-015-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., A. R. Ganguly, B. Nijssen, and D. P. Lettenmaier, 2015: Changes in observed climate extremes in global urban areas. Environ. Res. Lett., 10, 024005, https://doi.org/10.1088/1748-9326/10/2/024005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Ramírez-Aguilar, E. A., and L. C. L. Souza, 2019: Urban form and population density: Influences on urban heat island intensities in Bogotá, Colombia. Urban Climate, 29, 100497, https://doi.org/10.1016/j.uclim.2019.100497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, G. Y., and Y. Q. Zhou, 2014: Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Climate, 27, 23402360, https://doi.org/10.1175/JCLI-D-13-00393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in the increase of hot temperature extremes. Nat. Climate Change, 4, 161163, https://doi.org/10.1038/nclimate2145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinoni, J., M. Lakatos, T. Szentimrey, Z. Bihari, S. Szalai, J. Vogt, and T. Antofie, 2015: Heat and cold waves trends in the Carpathian region from 1961 to 2010. Int. J. Climatol., 35, 41974209, https://doi.org/10.1002/joc.4279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and Coauthors, 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, https://doi.org/10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, E. I., G. Fischer, H. Van Velthuizen, C. Walter, and F. Ewert, 2013: Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteor., 170, 206215, https://doi.org/10.1016/j.agrformet.2011.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Chen, S. F. B. Tett, Z. Yan, P. Zhai, J. Feng, and J. Xia, 2020: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun., 11, 528, https://doi.org/10.1038/s41467-019-14233-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Y. Ding, Q. Zhang, and Y. Song, 2012: Changing trends of daily temperature extremes with different intensities in China. Acta Meteor. Sin., 26, 399409, https://doi.org/10.1007/s13351-012-0401-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, S., N. Sadoff, E. Zell, and A. D. Sherbinin, 2015: Policy-relevant indicators for mapping the vulnerability of urban populations to extreme heat events: A case study of Philadelphia. Appl. Geogr., 63, 231243, https://doi.org/10.1016/j.apgeog.2015.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., Y. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal south China. J. Appl. Meteor. Climatol., 58, 17991819, https://doi.org/10.1175/JAMC-D-18-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., L. Wang, R. Yao, M. Luo, S. Wang, and L. Wang, 2020: Quantitatively evaluating the effect of urbanization on heat waves in China. Sci. Total Environ., 731, 138857, https://doi.org/10.1016/j.scitotenv.2020.138857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., Z. Wang, W. Pan, Y. Wang, and S. Yang, 2019: Sensitivity of extreme temperature events to urbanization in the Pearl River delta region. Asia-Pac. J. Atmos. Sci., 55, 373386, https://doi.org/10.1007/s13143-018-0094-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., L. R. Leung, N. Zhao, C. Zhao, Y. Qian, K. Hu, X. Liu, and B. Chen, 2017: Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett., 44, 69406950, https://doi.org/10.1002/2017GL074084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, R., L. Wang, X. Huang, Z. Niu, F. Liu, and Q. Wang, 2017: Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Sci. Total Environ., 609, 742754, https://doi.org/10.1016/j.scitotenv.2017.07.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, R., L. Wang, X. Huang, W. Gong, and X. Xia, 2019: Greening in rural areas increases the surface urban heat island intensity. Geophys. Res. Lett., 46, 22042212, https://doi.org/10.1029/2018GL081816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, R., L. Wang, X. Huang, Y. Liu, Z. Niu, S. Wang, and L. Wang, 2021: Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Sci. Total Environ., 772, 145607, https://doi.org/10.1016/j.scitotenv.2021.145607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., Y. Sun, H. Wan, X. Zhang, and C. Lu, 2016: Detection of anthropogenic influence on the intensity of extreme temperatures in China. Int. J. Climatol., 37, 12291237, https://doi.org/10.1002/joc.4771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., L. Wang, P. Wu, P. Ji, J. Sheffield, and M. Zhang, 2019: Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun., 10, 4661, https://doi.org/10.1038/s41467-019-12692-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, Y., C. Liu, Y. Luo, X. Liang, L. Huang, F. Chen, and R. Rasmmusen, 2020: Convection-permitting regional climate simulation of warm-season precipitation over eastern China. Climate Dyn., 54, 14691489, https://doi.org/10.1007/s00382-019-05070-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Shou, R. Dickerson, and F. Chen, 2011: Impact of upstream urbanization on the urban heat island effects over the Washington–Baltimore metropolitan region. J. Appl. Meteor. Climatol., 50, 20122029, https://doi.org/10.1175/JAMC-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., L. Fu, J. Pan, and Y. Xu, 2017: Projected changes in temperature extremes in China using PRECIS. Atmosphere, 8, 15, https://doi.org/10.3390/atmos8010015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., K. Wang, D. Qi, and J. Tan, 2019: Attribution of a record-breaking heatwave event in summer 2017 over Yangtze River Delta [in “Explaining Extreme Events of 2017 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 100 (1), S97S103, https://doi.org/10.1175/BAMS-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., D. Chen, K. Wang, A. Dai, and D. Qi, 2020: Conditional attribution of the 2018 summer extreme heat over northeast China: Roles of urbanization, global warming, and warming-induced circulation changes [in “Explaining Extreme Events of 2018 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 101 (1), S71S76, https://doi.org/10.1175/BAMS-D-19-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 273 0 0
Full Text Views 469 200 12
PDF Downloads 391 97 8