• Atmospheric Science Data Center, 2021: CERES CCCM data quality summary RelD1: Updated on 30 September 2021. NASA Doc., 16 pp., https://ceres.larc.nasa.gov/documents/DQ_summaries/CERES_CCCM_DQS_RelD1.pdf.

    • Search Google Scholar
    • Export Citation
  • Austin, R. T., and N. B. Wood, 2018: Level 2B radar-only Cloud Water Content (2B-CWC-RO) process description and interface control document, product version P1 R05. NASA JPL CloudSat Project Doc. Revision 0, 51 pp., https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2b-cwc-ro/2B-CWC-RO_PDICD.P1_R05.rev0_.pdf.

    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36, 10881100, https://doi.org/10.1109/36.700993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Rausch, 2017: Global and regional estimates of warm cloud droplet number concentration based on 13 years of Aqua-MODIS observations. Atmos. Chem. Phys., 17, 98159836, https://doi.org/10.5194/acp-17-9815-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E., G. G. Mace, and A. Gettleman, 2020: Using A-Train observations to evaluate east Pacific cloud occurrence and radiative effects in the Community Atmosphere Model. J. Climate, 33, 61876203, https://doi.org/10.1175/JCLI-D-19-0870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., S. P. de Szoeke, P. Zuidema, and X. Zeng, 2010: A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck. Atmos. Chem. Phys., 10, 65276536, https://doi.org/10.5194/acp-10-6527-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., and Coauthors, 2007: Comparison of CALIPSO-like, LaRC, and MODIS retrievals of ice-cloud properties over SIRTA in France and Florida during CRYSTAL-FACE. J. Appl. Meteor. Climatol., 46, 249272, https://doi.org/10.1175/JAM2435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, and B. Khattatov, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 73137336, https://doi.org/10.1029/2000JD900507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, https://doi.org/10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, https://doi.org/10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and E. Berry, 2015: CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region. J. Geophys. Res. Atmos., 120, 12 19812 208, https://doi.org/10.1002/2015JD023600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fillmore, D. W., D. A. Rutan, S. Kato, F. G. Rose, and T. E. Caldwell, 2022: Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product. Atmos. Chem. Phys., 22, 10 11510 137, https://doi.org/10.5194/acp-22-10115-2022.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., K. N. Liou, M. Cribb, T. Charlock, and A. Grossman, 1997: On multiple scattering in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812, https://doi.org/10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., and Coauthors, 2018: Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Rev. Geophys., 56, 409453, https://doi.org/10.1029/2017RG000593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt., 121, 555563, https://doi.org/10.1364/AO.12.000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., and B.-J. Sohn, 2012: Vertical-homogeneity assumption causing inconsistency between visible- and infrared-based cloud optical properties. IEEE Geosci. Remote Sens. Lett., 9, 531535, https://doi.org/10.1109/LGRS.2011.2173292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., B.-J. Sohn, P. Yang, and B. A. Baum, 2009: Assessment of the quality of MODIS cloud products from radiance simulations. J. Appl. Meteor. Climatol., 48, 15911612, https://doi.org/10.1175/2009JAMC2121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., B.-J. Sohn, S. Kato, and M. Satoh, 2013: Vertical structure of ice cloud layers from CloudSat and CALIPSO measurements and comparison to NICAM simulations. J. Geophys. Res. Atmos., 118, 99309947, https://doi.org/10.1002/jgrd.50582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., S. Kato, H. W. Barker, F. G. Rose, and S. Sun-Mack, 2014: Effects of 3D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from A-Train satellite data. J. Geophys. Res. Atmos., 119, 943963, https://doi.org/10.1002/2013JD020683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., S. Kato, H. W. Barker, F. G. Rose, and S. Sun-Mack, 2015: Improving the modelling of short-wave radiation through the use of a 3D scene construction algorithm. Quart. J. Roy. Meteor. Soc., 141, 18701883, https://doi.org/10.1002/qj.2491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., S. Kato, and F. G. Rose, 2017a: Examining impacts of mass–diameter (m-D) and area–diameter (A-D) relationships of ice particles on retrievals of effective radius and ice water content from radar and lidar measurements. J. Geophys. Res. Atmos., 122, 33963420, https://doi.org/10.1002/2016JD025672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., and Coauthors, 2017b: Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products. J. Geophys. Res. Atmos., 122, 88528884, https://doi.org/10.1002/2017JD026725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., and Coauthors, 2021: Examining cloud macrophysical changes over the Pacific for 2007–17 Using CALIPSO, CloudSat, and MODIS observations. J. Appl. Meteor. Climatol., 60, 11051126, https://doi.org/10.1175/JAMC-D-20-0226.1.

    • Search Google Scholar
    • Export Citation
  • Hang, Y., T. S. L’Ecuyer, D. S. Henderson, A. V. Matus, and Z. Wang, 2019: Reassessing the effect of cloud type on Earth’s energy balance in the age of active spaceborne observations. Part II: Atmospheric heating. J. Climate, 32, 62196236, https://doi.org/10.1175/JCLI-D-18-0754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith Jr., and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, https://doi.org/10.1029/2004GL021180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, https://doi.org/10.1016/S0022-4073(98)00075-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, https://doi.org/10.1175/JTECH-1694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., S. Sun-Mack, W. F. Miller, F. G. Rose, Y. Chen, P. Minnis, and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, https://doi.org/10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-,CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, https://doi.org/10.1029/2011JD016050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., S.-H. Ham, W. F. Miller, S. Sun-Mack, F. G. Rose, Y. Chen, and P. E. Mlynczak, 2021: Variable descriptions of the A-Train integrated CALIPSO, CloudSat, CERES, and MODIS merged product (CCCM or C3M), Doc. Ver. RelD1, updated November 2021. NASA, 63 pp., https://ceres.larc.nasa.gov/documents/collect_guide/pdf/c3m_variables.RelD1.20211117.pdf.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395, https://doi.org/10.1016/S0022-4073(97)00203-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., Y. Hang, A. V. Matus, and Z. Wang, 2019: Reassessing the effect of cloud type on Earth’s energy balance in the age of active spaceborne observations. Part I: Top of atmosphere and surface. J. Climate, 32, 61976217, https://doi.org/10.1175/JCLI-D-18-0753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., M. D. Lebsock, G. L. Stephens, and K. Suzuki, 2016: Improved retrieval of cloud liquid water from CloudSat and MODIS. J. Appl. Meteor. Climatol., 55, 18311844, https://doi.org/10.1175/JAMC-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13 71913 737, https://doi.org/10.5194/acp-14-13719-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the tropical rainfall measuring mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265, https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and F. J. Wrenn, 2013: Evaluation of the hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure–optical depth bins using merged CloudSat and CALIPSO data. J. Climate, 26, 94299444, https://doi.org/10.1175/JCLI-D-12-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., R. Marchand, Q. Zhang, and G. L. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, https://doi.org/10.1029/2006GL029017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. L. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., and G. G. Mace, 2018: Level 2 GEOPROF product process description and interface control document. NASA Doc., 27 pp., https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2b-geoprof/2B-GEOPROF_PDICD.P1_R05.rev0__0.pdf.

    • Search Google Scholar
    • Export Citation
  • Marchant, B., S. Platnick, K. Meyer, and G. Wind, 2020: Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products. Atmos. Meas. Tech., 13, 32633275, https://doi.org/10.5194/amt-13-3263-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., and Coauthors, 2012: Comparison of MODIS cloud microphysical properties with in-situ measurements over the southeast Pacific. Atmos. Chem. Phys., 12, 11 26111 273, https://doi.org/10.5194/acp-12-11261-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, https://doi.org/10.1109/TGRS.2011.2144602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., K. Bedka, T. Qing, C. R. Yost, S. T. Bedka, B. A. Scarino, K. Khlopenkov, and M. M. Khaiyer, 2016: A consistent long term cloud and clear-sky radiation property dataset from the Advanced Very High Resolution Radiometer (AVHRR). NOAA Climate Algorithm Theoretical Basis Doc., 159 pp., https://www.ncdc.noaa.gov/sites/default/files/cdr-documentation/CDRP-ATBD-0826%20AVHRR%20Cloud%20Properties%20-%20NASA%20C-ATBD%20(01B-30b)%20(DSR-1051).pdf.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2021: CERES MODIS cloud product retrievals for edition 4—Part I: Algorithm changes. IEEE Trans. Geosci. Remote Sens., 59, 27442780, https://doi.org/10.1109/TGRS.2020.3008866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noble, S. R., and J. G. Hudson, 2015: MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics. J. Geophys. Res. Atmos., 120, 83328344, https://doi.org/10.1002/2014JD022785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the southeast Pacific with VOCALS-REx in situ measurements. J. Geophys. Res., 116, D24206, https://doi.org/10.1029/2011JD016155.

    • Search Google Scholar
    • Export Citation
  • Platnick, S. E., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, F. G., T. Charlock, Q. Fu, S. Kato, D. Rutan, and Z. Jin, 2006: CERES proto-edition 3 radiative transfer: Model tests and radiative closure over surface validation sites. 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., P2.4, https://ams.confex.com/ams/pdfpapers/112358.pdf.

    • Search Google Scholar
    • Export Citation
  • Rutan, D., T. P. Charlock, F. Rose, S. Kato, S. Zentz, and L. Coleman, 2006: Global surface albedo from CERES/Terra Surface and Atmospheric Radiation Budget (SARB) data product. 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., P1.1, https://ams.confex.com/ams/pdfpapers/112637.pdf.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Singer, C. E., I. Lopez-Gomez, X. Zhang, and T. Schneider, 2021: Top-of-atmosphere albedo bias from neglecting three-dimensional cloud radiative effects. J. Atmos. Sci., 78, 40534069, https://doi.org/10.1175/JAS-D-21-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., J. Delanoë, and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 19521969, https://doi.org/10.1175/2011JAMC2646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., O. Kalashnikova, J. J. Gristey, P. Palevsky, D. R. Thompson, X. Huang, M. Lebsock, and S. Schmidt, 2021: The spectral nature of Earth’s reflected radiation: Measurement and science applications. Front. Remote Sens., 2, 664291, https://doi.org/10.3389/frsen.2021.664291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahler, A. H., J. P. Muller, and MODIS Science Team members, 1999: MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. NASA Doc., 53 pp., https://modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdf.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015a: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation. Atmos. Meas. Tech., 8, 32973313, https://doi.org/10.5194/amt-8-3297-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015b: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, https://doi.org/10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun-Mack, S., and Coauthors, 2008: Enhanced cloud algorithm from collocated CALIPSO, CloudSat and MODIS. CERES Science Team Meeting, Newport News, VA, NASA, https://ceres.larc.nasa.gov/documents/STM/2008-05/pdf/29_Sun-Mack.CERES.STM.200805.pdf.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1976: Computations of the absorption of solar radiation by clouds. J. Atmos. Sci., 33, 10871091, https://doi.org/10.1175/1520-0469(1976)033<1087:COTAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., and C. F. Bohren, 1980: Simple approximations for calculations of absorption in clouds. J. Atmos. Sci., 37, 20862094, https://doi.org/10.1175/1520-0469(1980)037<2086:SAFCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1974: The spherical albedo of a planet covered with a homogeneous cloud layer. Astron. Astrophys., 35, 209214, https://articles.adsabs.harvard.edu/pdf/1974A%26A....35..209V.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, https://doi.org/10.1175/2009JTECHA1228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Platnick, T. Fauchez, K. Meyer, Z. Zhang, H. Iwabuchi, and B. H. Kahn, 2019: An assessment of the impacts of cloud vertical heterogeneity on global ice cloud data records from passive satellite retrievals. J. Geophys. Res. Atmos., 124, 15781595, https://doi.org/10.1029/2018JD029681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2014: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ., 140, 6077, https://doi.org/10.1016/j.rse.2013.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2019: Global surface albedo product validation: Best practices protocol version 1.0. Good practices for satellite derived land product validation, Z. Wang, J. Nickeson, and M. Román, Eds., Land Product Validation Subgroup (WGCV/CEOS), 45 pp., https://doi.org/10.5067/DOC/CEOSWGCV/LPV/ALBEDO.001.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, https://doi.org/10.1029/2007JD009744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE., 4893, 466539, https://doi.org/10.1117/12.466539.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., B. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y.-X. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yost, C. R., P. Minnis, S. Sun-Mack, Y. Chen, and W. L. Smith, 2021: CERES MODIS cloud product retrievals for edition 4—Part II: Comparisons to CloudSat and CALIPSO. IEEE Trans. Geosci. Remote Sens., 59, 36953724, https://doi.org/10.1109/TGRS.2020.3015155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, https://doi.org/10.1175/2008JTECHA1221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., M. A. Vaughan, A. Garnier, J. L. Tackett, J. D. Lambeth, and K. Powell, 2018: Extinction and optical depth retrievals for CALIPSO’s version 4 data release. Atmos. Meas. Tech., 11, 57015727, https://doi.org/10.5194/amt-11-5701-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 355 355 89
Full Text Views 128 128 15
PDF Downloads 144 144 19

Combining Cloud Properties from CALIPSO, CloudSat, and MODIS for Top-of-Atmosphere (TOA) Shortwave Broadband Irradiance Computations: Impact of Cloud Vertical Profiles

Seung-Hee HamaScience Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Seung-Hee Ham in
Current site
Google Scholar
PubMed
Close
,
Seiji KatobNASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Fred G. RoseaScience Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Fred G. Rose in
Current site
Google Scholar
PubMed
Close
,
Sunny Sun-MackaScience Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Sunny Sun-Mack in
Current site
Google Scholar
PubMed
Close
,
Yan ChenaScience Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Yan Chen in
Current site
Google Scholar
PubMed
Close
,
Walter F. MilleraScience Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Walter F. Miller in
Current site
Google Scholar
PubMed
Close
, and
Ryan C. ScottbNASA Langley Research Center, Hampton, Virginia

Search for other papers by Ryan C. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud vertical profile measurements from the CALIPSO and CloudSat active sensors are used to improve top-of-atmosphere (TOA) shortwave (SW) broadband (BB) irradiance computations. The active sensor measurements, which occasionally miss parts of the cloud columns because of the full attenuation of sensor signals, surface clutter, or insensitivity to a certain range of cloud particle sizes, are adjusted using column-integrated cloud optical depth derived from the passive MODIS sensor. Specifically, we consider two steps in generating cloud profiles from multiple sensors for irradiance computations. First, cloud extinction coefficient and cloud effective radius (CER) profiles are merged using available active and passive measurements. Second, the merged cloud extinction profiles are constrained by the MODIS visible scaled cloud optical depth, defined as a visible cloud optical depth multiplied by (1 − asymmetry parameter), to compensate for missing cloud parts by active sensors. It is shown that the multisensor-combined cloud profiles significantly reduce positive TOA SW BB biases, relative to those with MODIS-derived cloud properties only. The improvement is more pronounced for optically thick clouds, where MODIS ice CER is largely underestimated. Within the SW BB (0.18–4 μm), the 1.04–1.90-μm spectral region is mainly affected by the CER, where both the cloud absorption and solar incoming irradiance are considerable.

Significance Statement

The purpose of this study is to improve shortwave irradiance computations at the top of the atmosphere by using combined cloud properties from active and passive sensor measurements. Relative to the simulation results with passive sensor cloud measurements only, the combined cloud profiles provide more accurate shortwave simulation results. This is achieved by more realistic profiles of cloud extinction coefficient and cloud particle effective radius. The benefit is pronounced for optically thick clouds composed of large ice particles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Hee Ham, seung-hee.ham@nasa.gov

Abstract

Cloud vertical profile measurements from the CALIPSO and CloudSat active sensors are used to improve top-of-atmosphere (TOA) shortwave (SW) broadband (BB) irradiance computations. The active sensor measurements, which occasionally miss parts of the cloud columns because of the full attenuation of sensor signals, surface clutter, or insensitivity to a certain range of cloud particle sizes, are adjusted using column-integrated cloud optical depth derived from the passive MODIS sensor. Specifically, we consider two steps in generating cloud profiles from multiple sensors for irradiance computations. First, cloud extinction coefficient and cloud effective radius (CER) profiles are merged using available active and passive measurements. Second, the merged cloud extinction profiles are constrained by the MODIS visible scaled cloud optical depth, defined as a visible cloud optical depth multiplied by (1 − asymmetry parameter), to compensate for missing cloud parts by active sensors. It is shown that the multisensor-combined cloud profiles significantly reduce positive TOA SW BB biases, relative to those with MODIS-derived cloud properties only. The improvement is more pronounced for optically thick clouds, where MODIS ice CER is largely underestimated. Within the SW BB (0.18–4 μm), the 1.04–1.90-μm spectral region is mainly affected by the CER, where both the cloud absorption and solar incoming irradiance are considerable.

Significance Statement

The purpose of this study is to improve shortwave irradiance computations at the top of the atmosphere by using combined cloud properties from active and passive sensor measurements. Relative to the simulation results with passive sensor cloud measurements only, the combined cloud profiles provide more accurate shortwave simulation results. This is achieved by more realistic profiles of cloud extinction coefficient and cloud particle effective radius. The benefit is pronounced for optically thick clouds composed of large ice particles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Hee Ham, seung-hee.ham@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.11 MB)
Save