• Adams, D. K., S. I. Gutman, K. L. Holub, and D. S. Pereira, 2013: GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett., 40, 28182823, https://doi.org/10.1002/grl.50573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., H. M. J. Barbosa, and K. P. Gaitán De Los Ríos, 2017: A spatiotemporal water vapor–deep convection correlation metric derived from the Amazon dense GNSS meteorological network. Mon. Wea. Rev., 145, 279288, https://doi.org/10.1175/MWR-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadieh, B., and N. Y. Krakauer, 2015: Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci., 19, 877891, https://doi.org/10.5194/hess-19-877-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayantobo, O. O., J. Wei, B. Kang, T. Li, and G. Wang, 2021: Spatial and temporal characteristics of atmospheric water vapour content and its relationship with precipitation conversion in China during 1980–2016. Int. J. Climatol., 41, 1747–1766, https://doi.org/10.1002/joc.6928.

    • Search Google Scholar
    • Export Citation
  • Bannon, J. K., and L. P. Steel, 1960: Averaged water vapor contents of the air. U.K. Meteorological Office Geophysical Memo. 102, 38 pp.

    • Crossref
    • Export Citation
  • Barindelli, S., E. Realini, G. Venuti, A. Fermi, and A. Gatti, 2018: Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth Planets Space, 70, 28, https://doi.org/10.1186/s40623-018-0795-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benevides, P., J. Catalao, and P. M. A. Miranda, 2015: On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci., 15, 26052616, https://doi.org/10.5194/nhess-15-2605-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benevides, P., J. Catalao, and G. Nico, 2019: Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors. Remote Sens., 11, 966, https://doi.org/10.3390/rs11080966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergemann, M., and C. Jakob, 2016: How important is tropospheric humidity for coastal rainfall in the tropics? Geophys. Res. Lett., 43, 58605868, https://doi.org/10.1002/2016GL069255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of the atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, https://doi.org/10.1029/92JD01517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonafoni, S., R. Biondi, H. Brenot, and R. Anthes, 2019: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review. Atmos. Res., 230, 104624, https://doi.org/10.1016/j.atmosres.2019.104624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., Z. Qian, T. Wu, X. Liang, and M. Song, 2004: Distribution, changes of atmospheric precipitable water over Qinghai-Xizang Plateau and its surroundings and their changeable precipitation climate (in Chinese). J. Plateau Meteor., 23 (1), 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and Coauthors, 2019: The future of midlatitude cyclones. Curr. Climate Change Rep., 5, 407420, https://doi.org/10.1007/s40641-019-00149-4.

    • Search Google Scholar
    • Export Citation
  • Chen, T., T. Ao, and X. Li, 2019: Temporal and spatial variation of air water resources in the Yangtze River basin in recent seventy years. China Rural Water Hydropower, 5, 611.

    • Search Google Scholar
    • Export Citation
  • CMA, 1979: Atlas of Climate of the People’s Republic of China. SinoMaps Press, 226 pp.

    • Crossref
    • Export Citation
  • Deeter, M. N., 2007: A new satellite retrieval method for precipitable water vapor over land and ocean. Geophys. Res. Lett., 34, L02815, https://doi.org/10.1029/2006GL028019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, https://doi.org/10.1029/2005JD006116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W. D., Y. Lin, J. S. Wright, Y. Xie, X. Yin, and J. Guo, 2019: Precipitable water and CAPE dependence of rainfall intensities in China. Climate Dyn., 52, 33573368, https://doi.org/10.1007/s00382-018-4327-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerreiro, S. B., H. J. Fowler, R. Barbero, S. Westra, G. Lenderink, S. Blenkinsop, E. Lewis, and X. F. Li, 2018: Detection of continental-scale intensification of hourly rainfall extremes. Nat. Climate Change, 8, 803807, https://doi.org/10.1038/s41558-018-0245-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardwick-Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub‐daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, https://doi.org/10.1029/2010GL045081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hein, G. W., 2020: Status, perspectives and trends of satellite navigation. Satell. Navig., 1, 22, https://doi.org/10.1186/s43020-020-00023-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, https://doi.org/10.1175/2009JAS3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hottovy, S., and S. N. Stechmann, 2015: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci., 72, 47214738, https://doi.org/10.1175/JAS-D-15-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Huang, L., Z. Mo, S. Xie, L. Liu, J. Chen, C. Kang, and S. Wang, 2021: Spatiotemporal characteristics of GNSS-derived precipitable water vapor during heavy rainfall events in Guilin, China. Satell. Navig., 2, 13, https://doi.org/10.1186/s43020-021-00046-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., L. Zhou, and W. Chen, 2003: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci., 20, 5569, https://doi.org/10.1007/BF03342050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juneng, L., F. T. Tangang, and C. J. C. Reason, 2007: Numerical case study of an extreme rainfall event during 9–11 December 2004 over the east coast of Peninsular Malaysia. Meteor. Atmos. Phys., 98, 8198, https://doi.org/10.1007/s00703-006-0236-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, https://doi.org/10.1088/1748-9326/5/2/025208.

    • Search Google Scholar
    • Export Citation
  • Li, G., and J. Deng, 2013: Atmospheric water monitoring by using ground-based GPS during heavy rains produced by TPV and SWV. Adv. Meteor., 13, 793957, https://doi.org/10.1155/2013/793957.

    • Search Google Scholar
    • Export Citation
  • Li, G., C. Li, J. Ao, Y. He, and Y. Huang, 2015: Research on characteristics of spatiotemporal distribution of precipitable water in Hainan Island. J. Nat. Disasters, 24, 129138, https://doi.org/10.13577/j.jnd.2015.0515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, H., Y. Zhang, L. Cao, and Y. Cao, 2020: Temporal relations between precipitable water vapour and precipitation during wet seasons based on nearly two decades of data from the Lhasa River valley, Tibetan Plateau. Int. J. Climatol., 40, 16561668, https://doi.org/10.1002/joc.6293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., C. E. Holloway, and J. D. Neelin, 2011: Column water vapor statistics and their relationship to deep convection, vertical and horizontal circulation, and moisture structure at Nauru. J. Climate, 24, 54545466, https://doi.org/10.1175/JCLI-D-10-05015.1.

    • Search Google Scholar
    • Export Citation
  • Liu, S., J. Zhang, Z. He, D. Cai, and G. Tian, 2011: Estimate of topography influences on precipitation distribution during typhoon process in Hainan Island. J. Nat. Disasters, 20, 196199.

    • Search Google Scholar
    • Export Citation
  • Ma, X., K. Shang, J. Li, J. Wang, Y. Kang, and S. Wang, 2015: Spatial and temporal changes of atmospheric precipitable water in the eastern part of Northwest China from 1981 to 2010. J. Desert Res., 35, 448455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415, 514517, https://doi.org/10.1038/415514a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Ni, Y., and X. Zhou, 2004: Study for formation mechanism of heavy rainfall within the Meiyu front along the middle and downstream of Yangtze River and theories and methods of their detection and prediction. Acta Meteor. Sin., 62, 647662, https://doi.org/10.11676/qxxb2004.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685, https://doi.org/10.1175/2009JCLI2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, I., and A. Al-Tabbaa, 2009: Trends in seasonal precipitation extremes—An indicator of ‘climate change’ in Kerala, India. J. Hydrol., 367, 6269, https://doi.org/10.1016/j.jhydrol.2008.12.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., 2018: What precipitation is extreme? Science, 360, 10721073, https://doi.org/10.1126/science.aat1871.

  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, https://doi.org/10.1038/nphys314.

  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priego, E., J. Jones, M. J. Porres, and A. Seco, 2017: Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish Mediterranean area. Geomatics Nat. Hazards Risk, 8, 282294, https://doi.org/10.1080/19475705.2016.1201150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 1965: Sellers, W. D. 1965: Physical climatology. Chicago: University of Chicago Press, 272 pp. Prog. Phys. Geogr., 33, 130132, https://doi.org/10.1177/0309133308096757.

    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 247–251, https://doi.org/10.1029/GM015p0247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapucci, L., L. Machado, E. Souza, and T. Campos, 2018: Global positioning system precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteor. Appl., 26, 4963, https://doi.org/10.1002/met.1735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and Coauthors, 2016: Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 137, 201216, https://doi.org/10.1007/s10584-016-1669-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., J. D. Neelin, D. K. Adams, and B. R. Lintner, 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40434063, https://doi.org/10.1175/JAS-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifi, M. A., A. S. Khaniani, and M. Joghataei, 2015: Comparison of GPS precipitable water vapor and meteorological parameters during rainfalls in Tehran. Meteor. Atmos. Phys., 127, 701710, https://doi.org/10.1007/s00703-015-0383-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, C., Q. Zhao, J. Geng, Y. Lou, M. Ge, and J. Liu, 2008: Recent development of PANDA software in GNSS data processing. Proc. SPIE, 7285, 72851S, https://doi.org/10.1117/12.816261.

    • Search Google Scholar
    • Export Citation
  • Shi, C., W. Zhang, Y. Cao, Y. Lou, H. Liang, and L. Fan, 2020: Atmospheric water vapor climatological characteristics over Indo–China region based on Beidou/GNSS and relationships with precipitation. Acta Geod. Cartogr. Sin., 49, 11121119, https://doi.org/10.11947/j.AGCS.2020.20200339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and J. Ao, 2013: Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull., 58, 13951401, https://doi.org/10.1007/s11434-012-5542-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., D. K. Adams, H. Wang, and Z. Kuang, 2019: On the diurnal cycle of GPS-derived precipitable water vapor over Sumatra. J. Atmos. Sci., 76, 35293552, https://doi.org/10.1175/JAS-D-19-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, https://doi.org/10.1007/s00382-005-0017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Baelen, J., and G. Penide, 2009: Study of water vapor vertical variability and possible cloud formation with a small network of GPS stations. Geophys. Res. Lett., 36, L02804, https://doi.org/10.1029/2008GL036148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, C., P. Wu, L. Zhang, and L. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep., 6, 38506, https://doi.org/10.1038/srep38506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., E. J. Fetzer, S. Wong, A. Behrangi, E. T. Olsen, J. Cohen, B. H. Lambrigtsen, and L. Chen, 2014: Impact of increased water vapor on precipitation efficiency over Northern Eurasia. Geophys. Res. Lett., 41, 29412947, https://doi.org/10.1002/2014GL059830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and R. E. Eskridge, 1996: Analysis of inhomogeneities in radiosonde temperature and humidity time series. J. Climate, 9, 884894, https://doi.org/10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 26432652, https://doi.org/10.1175/1520-0442(1997)010<2643:AWVOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., J. Han, J. Chen, and P. Liu, 2012: Analysis of correlation between water vapor content and precipitation over North China. J. Arid Meteor., 30, 207214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Lou, J. S. Haase, R. Zhang, G. Zheng, J. Huang, C. Shi, and J. Liu, 2017: The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-Interim moisture trends and errors from 1999 to 2015. J. Climate, 30, 76437667, https://doi.org/10.1175/JCLI-D-16-0591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. Li, H. Wan, and A. J. Cannon, 2017: Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci., 10, 255259, https://doi.org/10.1038/ngeo2911.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., 2001: The Crustal Movement Observation Network of China (in Chinese). China Basic Sci., 3, 4549.

  • Zheng, Z., J. Gao, Z. Ma, Z. Wang, X. Yang, X. Luo, J. Thierry, and G. Fu, 2016: Urban flooding in China: Main causes and policy recommendation. Hydrol. Processes, 30, 11491152, https://doi.org/10.1002/hyp.10717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., P. Wu, C. Wang, and J. Han, 2012: Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau. J. Geogr. Sci., 22, 795809, https://doi.org/10.1007/s11442-012-0964-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Z. Bai, and Y. Yang, 2017: Linking trends in urban extreme rainfall to urban flooding in China. Int. J. Climatol., 37, 45864593, https://doi.org/10.1002/joc.5107.

    • Search Google Scholar
    • Export Citation
  • Zou, Y., Y. Wang, D. Wen, and Y. Su, 2012: A comparative study of GPS precipitable water using different climate types (in Chinese). J. Wuhan Univ., 37, 573–581, https://doi.org/10.13203/j.whugis2012.05.019.

All Time Past Year Past 30 Days
Abstract Views 542 542 36
Full Text Views 174 174 7
PDF Downloads 114 114 7

Correlation Analysis between Precipitation and Precipitable Water Vapor over China Based on 1999–2015 Ground-Based GPS Observations

Zhixuan ZhangaGNSS Research Center, Wuhan University, Wuhan, Hubei, China

Search for other papers by Zhixuan Zhang in
Current site
Google Scholar
PubMed
Close
,
Yidong LouaGNSS Research Center, Wuhan University, Wuhan, Hubei, China

Search for other papers by Yidong Lou in
Current site
Google Scholar
PubMed
Close
,
Weixing ZhangaGNSS Research Center, Wuhan University, Wuhan, Hubei, China

Search for other papers by Weixing Zhang in
Current site
Google Scholar
PubMed
Close
,
Hong LiangbMeteorological Observation Centre of China Meteorological Administration, Beijing, China

Search for other papers by Hong Liang in
Current site
Google Scholar
PubMed
Close
,
Jingna BaiaGNSS Research Center, Wuhan University, Wuhan, Hubei, China

Search for other papers by Jingna Bai in
Current site
Google Scholar
PubMed
Close
, and
Weiwei SongaGNSS Research Center, Wuhan University, Wuhan, Hubei, China

Search for other papers by Weiwei Song in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Correlation analysis between precipitable water vapor (PWV) and precipitation over China was conducted by combining high-quality PWV data based on 1999–2015 ground-based global positioning system (GPS) observations with the measurements at matched meteorological stations in the same period. The mean correlation coefficient at all the stations is approximately 0.73, indicating that there is a significant positive correlation between PWV content and precipitation measurements, and the comparison of correlation among different climate types suggests that the distribution characteristics of the correlation coefficients are distinctively related to different climate types. There is also some positive correlation between PWV and precipitation long-term trends, with the correlation coefficients of monthly anomalies ranging generally from 0.2 to 0.6. Furthermore, the intensity of both PWV and precipitation extremes shows a long-term upward trend overall, with the most-intense events showing more significant increases. The extreme precipitation–temperature scaling rate of changes can reach above Clausius–Clapeyron (CC) scaling, whereas that of the extreme PWV-temperature is sub-CC overall, with regional differences in the specific scaling values. The correlation analysis in this work is of great significance for long-term climate analysis and extreme weather understanding, which provides a valuable reference for better utilizing the advantages of PWV data to carry out the studies above.

Significance Statement

Atmospheric water vapor is crucial to the climate system, especially in the context of global warming, and accurate knowledge of the correlation between precipitable water vapor (PWV) and precipitation is of great significance for long-term climate analysis and extreme precipitation weather forecasting. We take full advantage of the long-term homogeneity of ground-based GPS to conduct long-term correlation analysis between GPS-derived PWV and precipitation over China. Results show a significant positive correlation between them, and the degree of correlation is related to different climate types. The correlation of monthly anomalies is also positive, and, over the long-term, both water vapor and precipitation extremes have been increasing in intensity, with more significant increases occurring in the most-intense events. Extreme precipitation might increase beyond thermodynamic expectations, whereas PWV increases below expectations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weixing Zhang, zhangweixing89@whu.edu.cn

Abstract

Correlation analysis between precipitable water vapor (PWV) and precipitation over China was conducted by combining high-quality PWV data based on 1999–2015 ground-based global positioning system (GPS) observations with the measurements at matched meteorological stations in the same period. The mean correlation coefficient at all the stations is approximately 0.73, indicating that there is a significant positive correlation between PWV content and precipitation measurements, and the comparison of correlation among different climate types suggests that the distribution characteristics of the correlation coefficients are distinctively related to different climate types. There is also some positive correlation between PWV and precipitation long-term trends, with the correlation coefficients of monthly anomalies ranging generally from 0.2 to 0.6. Furthermore, the intensity of both PWV and precipitation extremes shows a long-term upward trend overall, with the most-intense events showing more significant increases. The extreme precipitation–temperature scaling rate of changes can reach above Clausius–Clapeyron (CC) scaling, whereas that of the extreme PWV-temperature is sub-CC overall, with regional differences in the specific scaling values. The correlation analysis in this work is of great significance for long-term climate analysis and extreme weather understanding, which provides a valuable reference for better utilizing the advantages of PWV data to carry out the studies above.

Significance Statement

Atmospheric water vapor is crucial to the climate system, especially in the context of global warming, and accurate knowledge of the correlation between precipitable water vapor (PWV) and precipitation is of great significance for long-term climate analysis and extreme precipitation weather forecasting. We take full advantage of the long-term homogeneity of ground-based GPS to conduct long-term correlation analysis between GPS-derived PWV and precipitation over China. Results show a significant positive correlation between them, and the degree of correlation is related to different climate types. The correlation of monthly anomalies is also positive, and, over the long-term, both water vapor and precipitation extremes have been increasing in intensity, with more significant increases occurring in the most-intense events. Extreme precipitation might increase beyond thermodynamic expectations, whereas PWV increases below expectations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weixing Zhang, zhangweixing89@whu.edu.cn
Save