• Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auer, A. H., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, https://doi.org/10.1175/JAMC-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric radar relations for quantification of snow based on drisdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, and D. Zrnić, 2020: Polarimetric relations for snow estimation – radar verification. J. Appl. Meteor. Climatol., 59, 991–1009, https://doi.org/10.1175/JAMC-D-19-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2021: A dual-frequency radar retrieval of two parameters of the snowfall particle size distribution using a neural network. J. Appl. Meteor. Climatol., 60, 341359, https://doi.org/10.1175/JAMC-D-20-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habit: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001: Assessing cloud-phase conditions. J. Appl. Meteor., 40, 19671983, https://doi.org/10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delene, D. J., 2011: Airborne data processing and analysis software package. Earth Sci. Inform., 4, 2944, https://doi.org/10.1007/s12145-010-0061-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delene, D. J., 2022: UND Cloud Microphysics IMPACTS 2020, version 1. NASA Global Hydrometeorology Resource Center DAAC, accessed 21 February 2021, https://doi.org/10.5067/IMPACTS/MULTIPLE/DATA101.

    • Crossref
    • Export Citation
  • Dunnavan, E. L., and Z. Jiang, 2019: A general method for estimating bulk 2d projections of ice particle shape: Theory and applications. J. Atmos. Sci., 76, 305332, https://doi.org/10.1175/JAS-D-18-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., Z. Jiang, J. Y. Harrington, J. Verlinde, K. Fitch, and T. J. Garrett, 2019: The shape and density evolution of snow aggregates. J. Atmos. Sci., 76, 39193940, https://doi.org/10.1175/JAS-D-19-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass-dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, K. E., C. Hang, A. Talaei, and T. J. Garrett, 2021: Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements. Atmos. Meas. Tech., 14, 11271142, https://doi.org/10.5194/amt-14-1127-2021.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shukurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gärtner, B., and S. Schönherr, 1998: Exact primitives for smallest enclosing ellipses. Inf. Process. Lett., 68, 3338, https://doi.org/10.1016/S0020-0190(98)00132-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, J., and J. Weare, 2010: Ensemble samplers with affine invariance. Comm. App. Math. Comp. Sci., 5, 6580, https://doi.org/10.2140/camcos.2010.5.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne, 2015: Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmos. Chem. Phys., 15, 13 78713 802, https://doi.org/10.5194/acp-15-13787-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinsted, A., 2022: Ensemble MCMC sampler. Github, accessed 18 April 2022, https://github.com/grinsted/gwmcmc.

    • Crossref
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, https://doi.org/10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, https://doi.org/10.1175/JAM2340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., D. Rosenfeld, Y. Zhu, X. Lu, and J. Carlin, 2021: Multi-channel Imager Algorithm (MIA): A novel cloud-top phase classification algorithm. Atmos. Res., 261, 105767, https://doi.org/10.1016/j.atmosres.2021.105767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, https://doi.org/10.1175/JAS-D-14-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, E. E. Clothiaux, K. Aydin, G. Botta, and Y. Lu, 2017: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725–734, https://doi.org/10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., 1985: Air flow and particle trajectories around aircraft fuselages. III: Extensions to particles of arbitrary shape. J. Atmos. Oceanic Technol., 2, 539547, https://doi.org/10.1175/1520-0426(1985)002<0539:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., 1986: Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol., 3, 433439, https://doi.org/10.1175/1520-0426(1986)003<0433:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and T. Leisner, 2020: Review of experimental studies of secondary ice production. Atmos. Chem. Phys., 20, 11 767–11 797, https://doi.org/10.5194/acp-20-11767-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802–823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Export Citation
  • Lamb, D., and W. D. Scott, 1972: Linear growth rates of ice crystals grown from the vapor phase. J. Cryst. Growth, 12, 2131, https://doi.org/10.1016/0022-0248(72)90333-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signature of snowflake riming: A modeling study. Earth Space Sci., 2, 346358, https://doi.org/10.1002/2015EA000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., 1983: Growth processes of snow. Ph.D. thesis, Massachusetts Institute of Technology, 193 pp.

  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697–706, https://doi.org/10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139147, https://doi.org/10.2151/jmsj1965.43.3_139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2020: Ice hydrometeor shape estimations using polarimetric operational and research radar measurements. Atmosphere, 11, 97, https://doi.org/10.3390/atmos11010097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., C. G. Schmitt, M. Maahn, and G. de Boer, 2017: Atmospheric ice particle shape estimates from polarimetric radar measurements and in situ observations. J. Atmos. Oceanic Technol., 34, 25692587, https://doi.org/10.1175/JTECH-D-17-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. V. Ryzhkov, M. Maahn, and G. de Boer, 2020: Hydrometeor shape variability in snowfall as retrieved from polarimetric radar measurements. J. Appl. Meteor. Climatol., 59, 15031517, https://doi.org/10.1175/JAMC-D-20-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, https://doi.org/10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993 case study. J. Geophys. Res., 104, 31 763–31 779, https://doi.org/10.1029/1999JD900802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, https://doi.org/10.1029/2007JD008633.

    • Crossref
    • Export Citation
  • McFarquhar, G. M., T.-L. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0– λ–μ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, https://doi.org/10.1175/JAS-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. A. Finlon, D. M. Stechman, W. Wu, R. C. Jackson, and M. Freer, 2018: University of Illinois/Oklahoma Optical Array Probe (OAP) processing software, version 3.1.4. Zenodo, https://doi.org/10.5281/zenodo.1285969.

    • Crossref
    • Export Citation
  • McMurdie, L. A., and Coauthors, 2022: Chasing snowstorms: The investigation of microphysics and precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. Bull. Amer. Meteor. Soc., 103, E1243E1269, https://doi.org/10.1175/BAMS-D-20-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and J. M. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, https://doi.org/10.1175/JTECH-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor. Climatol., 29, 153163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos., 120, 12 644–12 655, https://doi.org/10.1002/2015JD023884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., A. Ryzhkov, and P. Zhang, 2020: Columnar vertical profiles (CVP) methodology for validating polarimetric retrievals in ice using in situ aircraft measurements. J. Atmos. Oceanic Technol., 37, 16231642, https://doi.org/10.1175/JTECH-D-20-0011.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., M. Wolde, and A. Korolev, 2019: Determination of ice water content IWC in tropical convective clouds from X-band dual-polarization airborne radar. Atmos. Meas. Tech., 12, 58975911, https://doi.org/10.5194/amt-12-5897-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., J.-I. Yano, and A. Khain, 2017: Ice multiplication by breakup in ice–ice collisions. Part I: Theoretical formulation. J. Atmos. Sci., 74, 17051719, https://doi.org/10.1175/JAS-D-16-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Sources of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, https://doi.org/10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor. Climatol., 35, 20802090, https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor. Climatol., 37, 12281240, https://doi.org/10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 2019: Radar Polarimetry for Weather Observations. 1st ed. Springer, 486 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A., D. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor. Climatol., 37, 125134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Zrnić, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, https://doi.org/10.1175/1520-0426-19.3.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., 2018: Radar measurements and simulations of ice crystal growth in Arctic mixed phase clouds. Ph.D. thesis, The Pennsylvania State University, 162 pp.

    • Crossref
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2018: Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J. Appl. Meteor. Climatol., 57, 333346, https://doi.org/10.1175/JAMC-D-17-0114.1.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, https://doi.org/10.1175/JAMC-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., D. Moisseev, and A. von Lerber, 2016: How dual-polarization radar observations can be used to verify model representation of secondary ice. J. Geophys. Res. Atmos., 121, 10 954–10 970, https://doi.org/10.1002/2016JD025381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-radar multi-sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 33023320, https://doi.org/10.1175/JAS-D-12-0316.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, https://doi.org/10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Tiira, J., D. N. Moisseev, A. von Lerber, D. Ori, A. Tokay, L. F. Bliven, and W. Petersen, 2016: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in southern Finland. Atmos. Meas. Tech., 9, 48254841, https://doi.org/10.5194/amt-9-4825-2016.

    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys., 15, 39333956, https://doi.org/10.5194/acp-15-3933-2015.

    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35, 21682180, https://doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Welzl, E., 1991: Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer Science, H. Maurer, Ed., Lecture Notes in Computer Science, Vol. 555, Springer, 359–370.

  • Westbrook, C. D., 2014: Rayleigh scattering by hexagonal ice crystals and the interpretation of dual-polarisation radar measurements. Quart. J. Roy. Meteor. Soc., 140B, 20902096, https://doi.org/10.1002/qj.2262.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 542 542 22
Full Text Views 360 360 15
PDF Downloads 320 320 16

Radar Retrieval Evaluation and Investigation of Dendritic Growth Layer Polarimetric Signatures in a Winter Storm

Edwin L. DunnavanaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edwin L. Dunnavan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2730-216X
,
Jacob T. CarlinaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jacob T. Carlin in
Current site
Google Scholar
PubMed
Close
,
Jiaxi HuaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jiaxi Hu in
Current site
Google Scholar
PubMed
Close
,
Petar BukovčićaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Petar Bukovčić in
Current site
Google Scholar
PubMed
Close
,
Alexander V. RyzhkovaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquharaCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Joseph A. FinlondDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Joseph A. Finlon in
Current site
Google Scholar
PubMed
Close
,
Sergey Y. MatrosoveCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
fPhysical Sciences Laboratory, NOAA, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
, and
David J. DelenegDepartment of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by David J. Delene in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dual-polarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed Kdp and ZDR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using ZDR and Kdp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded −2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals.

significance statement

Developing snow is often detectable using weather radars. Meteorologists combine these radar measurements with mathematical equations to study how snow forms in order to determine how much snow will fall. This study evaluates current methods for estimating the total number and mass, sizes, and shapes of snowflakes from radar using images of individual snowflakes taken during two aircraft legs. Radar estimates of snowflake properties were most consistent with aircraft data inside regions with prominent radar signatures. However, radar estimates of snowflake shapes were not consistent with observed shapes estimated from the snowflake images. Although additional research is needed, these results bolster understanding of snow-growth physics and uncertainties between radar measurements and snow production that can improve future snowfall forecasting.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edwin L. Dunnavan, edwin.dunnavan@noaa.gov

Abstract

This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dual-polarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed Kdp and ZDR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using ZDR and Kdp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded −2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals.

significance statement

Developing snow is often detectable using weather radars. Meteorologists combine these radar measurements with mathematical equations to study how snow forms in order to determine how much snow will fall. This study evaluates current methods for estimating the total number and mass, sizes, and shapes of snowflakes from radar using images of individual snowflakes taken during two aircraft legs. Radar estimates of snowflake properties were most consistent with aircraft data inside regions with prominent radar signatures. However, radar estimates of snowflake shapes were not consistent with observed shapes estimated from the snowflake images. Although additional research is needed, these results bolster understanding of snow-growth physics and uncertainties between radar measurements and snow production that can improve future snowfall forecasting.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edwin L. Dunnavan, edwin.dunnavan@noaa.gov
Save