• American Meteorological Society, 2013: “Generating cell.” Glossary of Meteorology, http://glossary.ametsoc.org/wiki/generating_cell.

    • Crossref
    • Export Citation
  • Bolton, D., 1980: Computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall, 1994: Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci., 51, 48–67, https://doi.org/10.1175/1520-0469(1994)051<0048:IBTAAC>2.0.CO;2.

    • Crossref
    • Export Citation
  • Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117, https://doi.org/10.1175/1520-0493(1979)107<0001:MOTBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chater, A. M., and A. P. Sturman, 1998: Atmospheric conditions influencing the spillover rainfall to the lee of the Southern Alps of New Zealand. Int. J. Climatol., 18, 7792, https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, C.-M., and Y.-L. Lin, 2000: Effects of orography on the generation and propagation of mesoscale convective systems in a two-dimensional conditionally unstable flow. J. Atmos. Sci., 57, 3817–3837, https://doi.org/10.1175/1520-0469(2001)057<3817:EOOOTG>2.0.CO;2.

    • Crossref
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, and B. Kosovic, 2018: The impact of boundary layer turbulence on snow growth and precipitation: Idealized large eddy simulations. Atmos. Res., 204, 5466, https://doi.org/10.1016/j.atmosres.2018.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, https://doi.org/10.1175/0065-9401-21.43.29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Meteor. Soc., 59–83, https://doi.org/10.1007/978-1-935704-25-6_4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 115, 11681173, https://doi.org/10.1073/pnas.1716995115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and Coauthors, 2020: Quantifying snowfall from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 117, 51905195, https://doi.org/10.1073/pnas.1917204117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and Coauthors, 2021: Microphysical characteristics and evolution of seeded orographic clouds. J. Appl. Meteor. Climatol., 60, 909934, https://doi.org/10.1175/JAMC-D-20-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, https://doi.org/10.1175/JAS-D-10-05009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., and B. Geerts, 2020: Detailed dual-Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part I: Dynamic structure. J. Atmos. Sci., 77, 17611782, https://doi.org/10.1175/JAS-D-19-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, X. Chu, J. R. French, and R. M. Rauber, 2021: Detailed dual Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part II: Evidence for precipitation enhancement from observations and modeling. J. Atmos. Sci., 78, 3445–3472, https://doi.org/10.1175/JAS-D-20-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, J. R. French, S. Haimov, and R. M. Rauber, 2022: Estimating microphysics properties in ice-dominated clouds from airborne Ka–W-band dual-wavelength ratio reflectivity factor in close proximity to in situ probes. J. Atmos. Oceanic. Technol., https://doi.org/10.1175/JTECH-D-21-0147.1, in press.

    • Crossref
    • Export Citation
  • Heimes, K., and Coauthors, 2022: Vertical motions in orographic cloud systems over the Payette River basin. Part III: An evaluation of the impact of transient vertical motions on targeting during orographic cloud seeding operations. J. Appl. Meteor. Climatol., 61, 17471771, https://doi.org/10.1175/JAMC-D-21-0230.1.

  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, https://doi.org/10.1175/JAS3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., K. J. Richards, and P. W. M. Brighton, 1988: Stably stratified shear flow over low hills. Quart. J. Roy. Meteor. Soc., 114, 859886, https://doi.org/10.1002/qj.49711448203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 30163043, https://doi.org/10.1175/JAS3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itoo, K., 1953: Size, mass and some other properties of ice crystals in the air. Japan Meteor. Res. Inst., 3, 297–306, https://doi.org/10.2467/mripapers1950.3.4_297.

    • Crossref
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, https://doi.org/10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalas, D. P., and F. Einaudi, 1974: On the correct use of the wet adiabatic lapse rate in the stability criteria of a saturated atmosphere. J. Appl. Meteor., 13, 318324, https://doi.org/10.1175/1520-0450(1974)013<0318:OTCUOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Y.-L. Chen, 2017: Numerical simulations of two trapped mountain lee waves downstream of Oahu. J. Appl. Meteor. Climatol., 56, 13051324, https://doi.org/10.1175/JAMC-D-15-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2009: Mesoscale Dynamics. Cambridge University Press, 630 pp.

    • Crossref
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., and K. R. Knupp, 2018: A background investigation of tornado activity across the southern Cumberland Plateau terrain system of northeastern Alabama. Mon. Wea. Rev., 146, 42614278, https://doi.org/10.1175/MWR-D-18-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2015: Small-scale precipitation elements in midlatitude cyclones crossing the California Sierra Nevada. Mon. Wea. Rev., 143, 28422870, https://doi.org/10.1175/MWR-D-14-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and T. L. Keller, 1999: Deep-tropospheric gravity waves created by leeside cold fronts. J. Atmos. Sci., 56, 29863009, https://doi.org/10.1175/1520-0469(1999)056<2986:DTGWCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1987: Characteristics of cloud ice and precipitation during wintertime storms over the mountains of northern Colorado. J. Appl. Meteor. Climatol., 26, 488–524, https://doi.org/10.1175/1520-0450(1987)026<0488:COCIAP>2.0.CO;2.

  • Reinking, R. F., J. B. Snider, and J. L. Coen, 2000: Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation. J. Appl. Meteor. Climatol., 39, 733759, https://doi.org/10.1175/1520-0450(2000)039<0733:IOSEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and elevated convection in the comma-head region of continental of winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, J. C., W. J. Steenburgh, J. A. W. Cox, and J. P. Monteverdi, 2006: Terrain influences on synoptic storm structure and mesoscale precipitation distribution during IPEX IOP 3. Mon. Wea. Rev., 134, 478497, https://doi.org/10.1175/MWR3051.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, https://doi.org/10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2019: 100 years of progress on mountain meteorology research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial. Meteor. Monogr., No. 59, Amer. Meteor. Soc., 20.1–20.73, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0022.1.

  • Tessendorf, S. A., and Coauthors, 2019: Transformational approach to winter orographic weather modification research: The SNOWIE Project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., S. D. Mobbs, and B. A. Gardiner, 2002: Measurements of the near-surface flow over a hill. Quart. J. Roy. Meteor. Soc., 128, 22572280, https://doi.org/10.1256/qj.01.11.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2020: Microphysical properties of generating cells over the Southern Ocean: Results from SOCRATES. J. Geophys. Res. Atmos., 125, e2019JD032237, https://doi.org/10.1029/2019JD032237.

  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M. and J.-L. Brenquier, 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley-VCH, 655 pp.

  • Xue, L., and Coauthors, 2013a: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatol., 52, 14331457, https://doi.org/10.1175/JAMC-D-12-0148.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013b: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D simulations of actual seeding events and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, https://doi.org/10.1175/JAMC-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022: Vertical motions in orographic cloud systems over the Payette River basin. Part I: Recovery of vertical motions and their uncertainty from airborne Doppler radial velocity measurements. J. Appl. Meteor. Climatol., 61, 17071725, https://doi.org/10.1175/JAMC-D-21-0228.1.

All Time Past Year Past 30 Days
Abstract Views 295 295 38
Full Text Views 156 156 8
PDF Downloads 114 114 11

Vertical Motions in Orographic Cloud Systems over the Payette River Basin. Part II: Fixed and Transient Updrafts and Their Relationship to Forcing

Troy J. ZarembaaDepartment of Atmospheric Sciences, University of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Troy J. Zaremba in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0731-9706
,
Kaylee HeimesaDepartment of Atmospheric Sciences, University of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Kaylee Heimes in
Current site
Google Scholar
PubMed
Close
,
Robert M. RauberaDepartment of Atmospheric Sciences, University of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Bart GeertsbDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. FrenchbDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
,
Coltin GrasmickbDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Coltin Grasmick in
Current site
Google Scholar
PubMed
Close
,
Sarah A. TessendorfcResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
Lulin XuecResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Katja FriedrichdDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Roy M. RasmussencResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Melvin L. KunkeleDepartment of Resource Planning and Operations, Idaho Power Company, Boise, Idaho

Search for other papers by Melvin L. Kunkel in
Current site
Google Scholar
PubMed
Close
, and
Derek R. BlestrudeDepartment of Resource Planning and Operations, Idaho Power Company, Boise, Idaho

Search for other papers by Derek R. Blestrud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Updrafts in wintertime cloud systems over mountainous regions can be described as fixed, mechanically driven by the terrain under a given ambient wind and stability profile (i.e., vertically propagating gravity waves tied to flow over topography), and transient, associated primarily with vertical wind shear and conditional instability within passing weather systems. This analysis quantifies the magnitude of fixed and transient updraft structures over the Payette River basin sampled during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). Vertical motions were retrieved from Wyoming Cloud Radar measurements of radial velocity using the algorithm presented in Part I. Transient circulations were removed, and fixed orographic circulations were quantified by averaging vertical circulations along repeated cross sections over the same terrain during the campaign. Fixed orographic vertical circulations had magnitudes of 0.3–0.5 m s−1. These fixed vertical circulations were composed of a background circulation in which transient circulations were embedded. Transient vertical circulations are shown to be associated with transient wave motions, cloud-top generating cells, convection, and turbulence. Representative transient vertical circulations are illustrated, and data from rawinsondes over the Payette River basin are used to infer the relationship of the vertical circulations to shear and instability. Maximum updrafts are shown to exceed 5 m s−1 within Kelvin–Helmholtz waves, 4 m s−1 associated with transient gravity waves, 3 m s−1 in generating cells, 6 m s−1 in elevated convection, 4 m s−1 in surface-based deep convection, 5 m s−1 in boundary layer turbulence, and 9 m s−1 in shear-induced turbulence.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Troy J. Zaremba, tzaremb2@illinois.edu

Abstract

Updrafts in wintertime cloud systems over mountainous regions can be described as fixed, mechanically driven by the terrain under a given ambient wind and stability profile (i.e., vertically propagating gravity waves tied to flow over topography), and transient, associated primarily with vertical wind shear and conditional instability within passing weather systems. This analysis quantifies the magnitude of fixed and transient updraft structures over the Payette River basin sampled during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). Vertical motions were retrieved from Wyoming Cloud Radar measurements of radial velocity using the algorithm presented in Part I. Transient circulations were removed, and fixed orographic circulations were quantified by averaging vertical circulations along repeated cross sections over the same terrain during the campaign. Fixed orographic vertical circulations had magnitudes of 0.3–0.5 m s−1. These fixed vertical circulations were composed of a background circulation in which transient circulations were embedded. Transient vertical circulations are shown to be associated with transient wave motions, cloud-top generating cells, convection, and turbulence. Representative transient vertical circulations are illustrated, and data from rawinsondes over the Payette River basin are used to infer the relationship of the vertical circulations to shear and instability. Maximum updrafts are shown to exceed 5 m s−1 within Kelvin–Helmholtz waves, 4 m s−1 associated with transient gravity waves, 3 m s−1 in generating cells, 6 m s−1 in elevated convection, 4 m s−1 in surface-based deep convection, 5 m s−1 in boundary layer turbulence, and 9 m s−1 in shear-induced turbulence.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Troy J. Zaremba, tzaremb2@illinois.edu
Save