• Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58, 18891904, https://doi.org/10.1175/JAMC-D-19-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., and V. Chandrasekar, 2015: A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Oceanic Technol., 32, 2247, https://doi.org/10.1175/JTECH-D-14-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., G. W. Reuter, and E. R. Poolman, 2002: Modeling maximum hail size in Alberta thunderstorms. Wea. Forecasting, 17, 10481062, https://doi.org/10.1175/1520-0434(2002)017<1048:MMHSIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cacciamani, C., F. Battaglia, P. Patruno, L. Pomi, A. Selvini, and S. Tibaldi, 1995: A climatological study of thunderstorm activity in the Po Valley. Theor. Appl. Climatol., 50, 185203, https://doi.org/10.1007/BF00866116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, https://doi.org/10.1175/2009JAMC2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1973: Hail sensing and small-scale variability of windblown hail. J. Wea. Modif., 5, 3042.

  • Changnon, S. A., 1977: The scales of hail. J. Appl. Meteor., 16, 626648, https://doi.org/10.1175/1520-0450(1977)016<0626:TSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., D. Chagnon, and S. D. Hilberg, 2009: Hailstorms across the nation: An atlas about hail and its damages. Illinois State Water Survey Contract Rep. 2009-12, 101 pp., https://www.isws.illinois.edu/pubdoc/cr/iswscr2009-12.pdf.

    • Search Google Scholar
    • Export Citation
  • Davolio, S., A. Volonté, A. Manzato, A. Pucillo, A. Cicogna, and M. E. Ferrario, 2016: Mechanisms producing different precipitation patterns over northeastern Italy: Insights from HyMeX-SOP1 and previous events. Quart. J. Roy. Meteor. Soc., 142, 188205, https://doi.org/10.1002/qj.2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieling, C., M. Smith, and M. Beruvides, 2020: Review of impact factors of the velocity of large hailstones for laboratory hail impact testing consideration. Geosciences, 10, 500, https://doi.org/10.3390/geosciences10120500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eccel, E., P. Cau, K. Riemann-Campe, and F. Biasioli, 2012: Quantitative hail monitoring in an alpine area: 35-year climatology and links with atmospheric variables. Int. J. Climatol., 32, 503517, https://doi.org/10.1002/joc.2291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feudale, L., and A. Manzato, 2014: Cloud-to-ground lightning distribution and its relationship with orography and anthropogenic emissions in the Po Valley. J. Appl. Meteor. Climatol., 53, 26512670, https://doi.org/10.1175/JAMC-D-14-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraile, R., C. Berthet, J. Dessens, and J. L. Sánchez, 2003: Return periods of severe hailfalls computed from hailpad data. Atmos. Res., 67–68, 189202, https://doi.org/10.1016/S0169-8095(03)00051-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giaiotti, D., E. Gianesini, and F. Stel, 2001: Heuristic considerations pertaining to hailstone size distributions in the plain of Friuli Venezia Giulia. Atmos. Res., 57, 269288, https://doi.org/10.1016/S0169-8095(01)00080-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giaiotti, D., S. Nordio, and F. Stel, 2003: The climatology of hail in the plain of Friuli Venezia Giulia. Atmos. Res., 67–68, 247259, https://doi.org/10.1016/S0169-8095(03)00084-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grieser, J., and M. Hill, 2019: How to express hail intensity—Modeling the hailstone size distribution. J. Appl. Meteor. Climatol., 58, 23292345, https://doi.org/10.1175/JAMC-D-18-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P., and Coauthors, 2017: Severe convective storms in Europe: Ten years of research and education at the European Severe Storms Laboratory. Bull. Amer. Meteor. Soc., 98, 26412651, https://doi.org/10.1175/BAMS-D-16-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., M. Szakáll, A. Jost, I. Giammanco, and R. Wright, 2018: A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci., 75, 38613885, https://doi.org/10.1175/JAS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., M. Szakáll, A. Jost, I. Giammanco, R. Wright, and J. Brimelow, 2020: Corrigendum. J. Atmos. Sci., 77, 405412, https://doi.org/10.1175/JAS-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Wea. Forecasting, 24, 15921609, https://doi.org/10.1175/2009WAF2222230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., K. Lombardo, and S. Loeffler, 2021: The evolution of hail production in simulated supercell storms. J. Atmos. Sci., 78, 34173440, https://doi.org/10.1175/JAS-D-21-0034.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, M., J. Sander, and C. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. Int. J. Climatol., 29, 22832297, https://doi.org/10.1002/joc.1865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, H. J. Punge, S. Mohr, E. Fluck, and K. M. Bedka, 2018: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions. Quart. J. Roy. Meteor. Soc., 144, 231250, https://doi.org/10.1002/qj.3197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laviola, S., V. Levizzani, R. R. Ferraro, and J. Beauchamp, 2020: Hailstorm detection by satellite microwave radiometers. Remote Sens., 12, 621, https://doi.org/10.3390/rs12040621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., D. Schön, and M. Landry, 2011: Characteristics of a new automatic hail recorder. Atmos. Res., 100, 439446, https://doi.org/10.1016/j.atmosres.2010.10.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2016: A lightning parameterization for the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 144, 30573075, https://doi.org/10.1175/MWR-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzato, A., 2012: Hail in northeast Italy: Climatology and bivariate analysis with the sounding-derived indices. J. Appl. Meteor. Climatol., 51, 449467, https://doi.org/10.1175/JAMC-D-10-05012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzato, A., V. Riva, A. Tiesi, and M. M. Miglietta, 2020: Observational analysis and simulations of a severe hailstorm in northeastern Italy. Quart. J. Roy. Meteor. Soc., 146, 35873611, https://doi.org/10.1002/qj.3886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzato, A., S. Serafin, M. M. Miglietta, D. Kirshbaum, and W. Schulz, 2022: A pan-Alpine climatology of lightning and convective initiation. Mon. Wea. Rev., 150, 22132230, https://doi.org/10.1175/MWR-D-21-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., A. Hering, M. Kunz, A. Manzato, S. Mohr, L. Nisi, and S. Trefalt, 2018: Challenges and recent advances in hail research. Bull. Amer. Meteor. Soc., 99, ES51ES54, https://doi.org/10.1175/BAMS-D-17-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., A. Manzato, and R. Rotunno, 2016: Characteristics and predictability of a supercell during HyMeX SOP1. Quart. J. Roy. Meteor. Soc., 142, 28392853, https://doi.org/10.1002/qj.2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., Jr., 1973: A general description of the hail problem in the Po Valley of northern Italy. J. Appl. Meteor., 12, 338353, https://doi.org/10.1175/1520-0450(1973)012<0338:AGDOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., Jr, 1992: Some results of aircraft investigation of internal properties of thunderstorm cloud systems in northeastern Italy with an interpretation for hail prevention. Atmos. Res., 28, 259269, https://doi.org/10.1016/0169-8095(92)90012-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., Jr, and N. G. Towery, 1975: Small-scale variability of hail and its significance for hail prevention experiments. J. Appl. Meteor., 14, 763770, https://doi.org/10.1175/1520-0450(1975)014<0763:SSVOHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., Jr, and P. W. Summers, 1986: Hailfall and hailstorm characteristics. Thunderstorms: A Social and Technological Documentary, E. Kessler, Ed., Vol. 2, 2nd ed. University of Oklahoma Press, 363408.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using GridRad MESH observations. Mon. Wea. Rev., 149, 945958, https://doi.org/10.1175/MWR-D-20-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann, 2016: Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high resolution, radar-based analysis. Quart. J. Roy. Meteor. Soc., 142, 15901604, https://doi.org/10.1002/qj.2771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisi, L., A. Hering, U. Germann, K. Schroeer, H. Barras, M. Kunz, and O. Martius, 2020: Hailstorms in the Alpine region: Diurnal cycle, 4D-characteristics, and the nowcasting potential of lightning properties. Quart. J. Roy. Meteor. Soc., 146, 41704194, https://doi.org/10.1002/qj.3897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palencia, C., A. Castro, D. Giaiotti, F. Stel, and R. Fraile, 2011: Dent overlap in hailpads: Error estimation and measurement correction. J. Appl. Meteor. Climatol., 50, 10731087, https://doi.org/10.1175/2010JAMC2457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prodi, F., 1976: Hailstorms in the Po Valley of northern Italy. Riv. Ital. Geofis., 3, 2131.

  • Púčik, T., C. Castellano, P. Groenemeijer, T. Kühne, A. T. Rädler, B. Antonescu, and E. Faust, 2019: Large hail incidence and its economic and societal impacts across Europe. Mon. Wea. Rev., 147, 39013916, https://doi.org/10.1175/MWR-D-19-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pucillo, A., M. M. Miglietta, K. Lombardo, and A. Manzato, 2020: Application of a simple analytical model to the study of a bow echo–like storm in northeastern Italy. Meteor. Appl., 27, e1868, https://doi.org/10.1002/met.1868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Punge, H. J., and M. Kunz, 2016: Hail observations and hailstorm characteristics in Europe: A review. Atmos. Res., 176–177, 159184, https://doi.org/10.1016/j.atmosres.2016.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Punge, H. J., K. M. Bedka, M. Kunz, and A. Werner, 2014: A new physically based stochastic event catalog for hail in Europe. Nat. Hazards, 73, 16251645, https://doi.org/10.1007/s11069-014-1161-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Punge, H. J., K. M. Bedka, M. Kunz, and A. Reinbold, 2017: Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA-INTERIM reanalysis. Atmos. Res., 198, 3443, https://doi.org/10.1016/j.atmosres.2017.07.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez, J. L., and Coauthors, 2009: Characterization of hailstone size spectra in hailpad networks in France, Spain, and Argentina. Atmos. Res., 93, 641654, https://doi.org/10.1016/j.atmosres.2008.09.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuster, S. S., R. J. Blong, and M. S. Speer, 2005: A hail climatology of the greater Sydney area and New South Wales, Australia. Int. J. Climatol., 25, 16331650, https://doi.org/10.1002/joc.1199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shedd, L., M. R. Kumjian, I. Giammanco, T. Brown-Giammanco, and B. R. Maiden, 2021: Hailstone shapes. J. Atmos. Sci., 78, 639652, https://doi.org/10.1175/JAS-D-20-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., and A. Waldvogel, 1989: On determinations of maximum hailstone sizes from hailpad observations. J. Appl. Meteor. Climatol., 28, 7176, https://doi.org/10.1175/1520-0450(1989)028<0071:ODOMHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, G. S., and E. P. Lozowski, 1977: An Alberta study to objectively measure hailfall intensity. Atmosphere, 15, 3353, https://doi.org/10.1080/00046973.1977.9648429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taszarek, M., J. T. Allen, T. Púčik, K. A. Hoogewind, and H. E. Brooks, 2020: Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J. Climate, 33, 10 26310 286, https://doi.org/10.1175/JCLI-D-20-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towery, N. G., S. A. Changnon, and G. M. Morgan, 1976: A review of hail measuring instruments. Bull. Amer. Meteor. Soc., 57, 1132–1141, https://doi.org/10.1175/1520-0477(1976)057<1132:AROHMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vittori, O., and G. di Caporiacco, 1959: The density of hailstones. Nubila, 2, 5157.

  • Waldvogel, A., W. Schmid, and B. Federer, 1978a: The kinetic energy of hailfalls. Part I: Hailstone spectra. J. Appl. Meteor., 17, 515520, https://doi.org/10.1175/1520-0450(1978)017<0515:TKEOHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., B. Federer, W. Schmid, and J. F. Mezeix, 1978b: The kinetic energy of hailfalls. Part II: Radar and hailpads. J. Appl. Meteor., 17, 16801693, https://doi.org/10.1175/1520-0450(1978)017<1680:TKEOHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18, 15211525, https://doi.org/10.1175/1520-0450(1979)018<1521:CFTDOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, H. K., 1953: Observational data on the formation of precipitation in cumulonimbus clouds. Thunderstorm Electricity, H. R. Byers, Ed., University Chicago Press, 66138.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1988: Manual on codes. Vol. 1, WMO Tech Doc. 306, 203 pp.

All Time Past Year Past 30 Days
Abstract Views 634 634 24
Full Text Views 181 181 7
PDF Downloads 144 144 10

Hailstone Characteristics in Northeast Italy from 29 Years of Hailpad Data

Agostino ManzatoaARPA Friuli Venezia Giulia–OSMER, Palmanova, Udine, Italy

Search for other papers by Agostino Manzato in
Current site
Google Scholar
PubMed
Close
,
Andrea CicognaaARPA Friuli Venezia Giulia–OSMER, Palmanova, Udine, Italy

Search for other papers by Andrea Cicogna in
Current site
Google Scholar
PubMed
Close
,
Massimo CentoreaARPA Friuli Venezia Giulia–OSMER, Palmanova, Udine, Italy

Search for other papers by Massimo Centore in
Current site
Google Scholar
PubMed
Close
,
Paolo BattistuttaaARPA Friuli Venezia Giulia–OSMER, Palmanova, Udine, Italy

Search for other papers by Paolo Battistutta in
Current site
Google Scholar
PubMed
Close
, and
Mauro TrevisanaARPA Friuli Venezia Giulia–OSMER, Palmanova, Udine, Italy

Search for other papers by Mauro Trevisan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although hail is a well-known meteorological hazard, it is hard to find long records of hail observed at the ground with high spatial resolution. Most hail climatologies are based on remote sensing observations or inhomogeneous networks of human observers. In the plain of Friuli Venezia Giulia (northeast Italy), a hailpad network of 367 stations has operated since 1988. During the 1988–2016 warm seasons, 7782 hailpads were impacted by hailstones and more than one million dents were observed and automatically analyzed, even though only 63% of them were associated with valid hailstone dents. In this work, this large quantity of direct hail observations is used to build a hail climatology in terms of hailstone size, areal density, and flux of kinetic energy. From the empirical distributions of data collected, it is possible to fit statistical distributions to the different hailstone/hailpad behaviors. In particular, it is also possible to find an approximate estimation of the flux of kinetic energy based only on the largest hail diameter observed on the hailpad. Last, temporal and spatial distributions of these characteristics are investigated. Hailstones are larger along a southwestern-to-northeastern alley, which is parallel to the main pre-Alpine crest, with the very largest sizes being more frequent on the southwestern corner. The only hail climate change signal that one can infer from the analysis of these multidecadal trends is that, in more recent years, hailstorms seem to produce fewer and larger hailstones, on average.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Agostino Manzato, agostino.manzato@osmer.fvg.it

Abstract

Although hail is a well-known meteorological hazard, it is hard to find long records of hail observed at the ground with high spatial resolution. Most hail climatologies are based on remote sensing observations or inhomogeneous networks of human observers. In the plain of Friuli Venezia Giulia (northeast Italy), a hailpad network of 367 stations has operated since 1988. During the 1988–2016 warm seasons, 7782 hailpads were impacted by hailstones and more than one million dents were observed and automatically analyzed, even though only 63% of them were associated with valid hailstone dents. In this work, this large quantity of direct hail observations is used to build a hail climatology in terms of hailstone size, areal density, and flux of kinetic energy. From the empirical distributions of data collected, it is possible to fit statistical distributions to the different hailstone/hailpad behaviors. In particular, it is also possible to find an approximate estimation of the flux of kinetic energy based only on the largest hail diameter observed on the hailpad. Last, temporal and spatial distributions of these characteristics are investigated. Hailstones are larger along a southwestern-to-northeastern alley, which is parallel to the main pre-Alpine crest, with the very largest sizes being more frequent on the southwestern corner. The only hail climate change signal that one can infer from the analysis of these multidecadal trends is that, in more recent years, hailstorms seem to produce fewer and larger hailstones, on average.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Agostino Manzato, agostino.manzato@osmer.fvg.it
Save