• Buck, A. L., 1981: New equation for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, J. McBride, and C.-H. Liu, 2005: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, https://doi.org/10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–1992. J. Climate, 9, 8596, https://doi.org/10.1175/1520-0442(1996)009<0085:VOTASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, B., and M. Katsumata, 2021: Variation of radar-observed precipitation characteristics in relation to the simultaneous passages of a Madden–Julian oscillation event and convectively coupled equatorial waves during the years of the Maritime Continent pilot study. Mon. Wea. Rev., 149, 33793399, https://doi.org/10.1175/MWR-D-20-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenfield, R. S., and T. N. Krishnamurti, 1979: The Winter Monsoon Experiment—Report of December 1978 field phase. Bull. Amer. Meteor. Soc., 60, 439444, https://doi.org/10.1175/1520-0477-60.5.439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassim, M. E. E., and B. Timbal, 2019: Observed rainfall trends over Singapore and the Maritime Continent from the perspective of regional-scale weather regimes. J. Appl. Meteor. Climatol., 58, 365384, https://doi.org/10.1175/JAMC-D-18-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and M.-Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J. Climate, 18, 795809, https://doi.org/10.1175/JCLI-3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, K., F. Matsumoto, T. Ichinoseand, and M. Taniguchi, 2009: Urban warming trends in several large Asian cities over the last 100 years. Sci. Total Environ., 407, 31123119, https://doi.org/10.1016/j.scitotenv.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, M., S. Mori, J.-I. Hamada, M. Hattori, F. Syamsudin, and M. D. Yamanaka, 2018: Diurnal cycle over a coastal area of the Maritime Continent as derived by special networked soundings over Jakarta during HARIMAU2010. Prog. Earth Planet. Sci., 5, 64, https://doi.org/10.1186/s40645-018-0216-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118, 283326, https://doi.org/10.1002/qj.49711850406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., J. McBride, G. Holland, N. Davidson, and B. Gunn, 1989: Diurnal variations during the Australian Monsoon Experiment (AMEX) phase II. Mon. Wea. Rev., 117, 25352553, https://doi.org/10.1175/1520-0493(1989)117<2535:DVDTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81, 24332456, https://doi.org/10.1175/1520-0477(2000)081<2433:TMCTEM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, T. K. R., R. L. Wilby, and C. Murphy, 2017: Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA, 114, 38613866, https://doi.org/10.1073/pnas.1617526114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, northern Australia). Mon. Wea. Rev., 135, 8292, https://doi.org/10.1175/MWR3273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea-breeze thunderstorms. Mon. Wea. Rev., 130, 22282239, https://doi.org/10.1175/1520-0493(2002)130<2228:CWPPRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., J. D. Kepert, and T. D. Keenan, 2008a: Polarimetric radar observations of the persistently asymmetric structure of Tropical Cyclone Ingrid. Mon. Wea. Rev., 136, 616630, https://doi.org/10.1175/2007MWR2077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008b: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629646, https://doi.org/10.1175/BAMS-89-5-629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., A. Protat, and C. Long, 2012: The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin, Australia). J. Climate, 25, 53095326, https://doi.org/10.1175/JCLI-D-11-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., B. Trewin, C.-H. Su, and B. Ostendorf, 2021: Verification of moist surface variables over northern Australia in a high resolution reanalysis (BARRA). J. South. Hemisphere Earth Sys. Sci., 71, 194202, https://doi.org/10.1071/ES21007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2018: Meridional march of diurnal rainfall over Jakarta, Indonesia, observed with a C-band Doppler radar: An overview of the HARIMAU2010 campaign. Prog. Earth Plant Sci., 5, 47, https://doi.org/10.1186/s40645-018-0202-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nairn, J. R., and R. J. B. Fawcett, 2015: The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health, 12, 227253, https://doi.org/10.3390/ijerph120100227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nairn, J. R., A. Moise, and B. Ostendorf, 2022: The impact of humidity on Australia’s operational heatwave services. Climate Serv., 27, 100315, https://doi.org/10.1016/j.cliser.2022.100315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nissan, H., K. Burkart, E. C. de Perez, M. van Aalst, and S. Mason, 2017: Defining and predicting heatwaves in Bangladesh. J. Appl. Meteor. Climatol., 56, 26532670, https://doi.org/10.1175/JAMC-D-17-0035.1.

    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 11671180, https://doi.org/10.1007/s00382-011-1237-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Physik, W. L., and R. K. Smith, 1985: Observations and dynamics of sea-breezes in northern Australia. Aust. Meteor. Mag., 33, 5163.

  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, https://doi.org/10.1175/2010JCLI3673.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, C., T. Matthews, and R. M. Horton, 2020: The emergence of heat and humidity too severe for human tolerance. Sci. Adv., 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838.

    • Crossref
    • Export Citation
  • Schafer, R., P. T. May, T. D. Keenan, K. McGuffie, W. L. Ecklund, P. J. Johnson, and K. S. Gage, 2001: Island boundary layer development over a tropical island during the Maritime Continent Thunderstorm Experiment (MCTEX). J. Atmos. Sci., 58, 21632179, https://doi.org/10.1175/1520-0469(2001)058<2163:BLDOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and K.-L. Kim, 2003: Propagation and initiation mechanisms of the Madden-Julian oscillation. J. Geophys. Res., 108, 4384, https://doi.org/10.1029/2002JD002876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Short, E., C. L. Vincent, and T. P. Lane, 2019: Diurnal cycle of surface winds in the Maritime Continent observed through satellite scatterometry. Mon. Wea. Rev., 147, 20232044, https://doi.org/10.1175/MWR-D-18-0433.1.

    • Search Google Scholar
    • Export Citation
  • Siswanto, S., G. J. van Oldenborgh, G. van der Schrier, R. Jildera, and B. van den Hurk, 2016: Temperature, extreme precipitation and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years. Int. J. Climatol., 36, 32073225, https://doi.org/10.1002/joc.4548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., K. I. Hodges, and G. J. Robinson, 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130, 14491467, https://doi.org/10.1256/qj.03.165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1994: Norms of apparent temperature in Australia. Aust. Meteor. Mag., 43, 1–16.

    • Crossref
    • Export Citation
  • Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 22672269, https://doi.org/10.1175/JAMC-D-11-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-H., and Coauthors, 2019: BARRA v1.0: The Bureau of Meteorology Atmospheric High-Resolution Regional Reanalysis for Australia. Geosci. Model Dev., 12, 20492068, https://doi.org/10.5194/gmd-12-2049-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, G., C. Schiller, A. R. MacKenzie, K. Bower, T. Peter, H. Schlager, N. R. P. Harris, and P. T. May, 2008: Studies in a natural laboratory: High-altitude aircraft measurements around deep tropical convection. Bull. Amer. Meteor. Soc., 89, 647662, https://doi.org/10.1175/BAMS-89-5-647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from Winter MONEX. J. Atmos. Sci., 37, 15211541, https://doi.org/10.1175/1520-0469(1980)037<1521:TUTECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448, https://doi.org/10.1175/2009JCLI2825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, H. Fudeyasu, M. D. Yamanaka, J. Matsumoto, F. Syamsudin, R. Sulistyowati, and Y. S. Djajadihardja, 2007: The impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java Island. SOLA, 3, 9396, https://doi.org/10.2151/sola.2007-024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., A. A. Arbain, S. Mori, J.-I. Hamada, M. Hattori, F. Syamsudin, and M. D. Yamanaka, 2013: The effects of an active phase of the Madden-Julian oscillation on the extreme precipitation event over western Java Island in January 2013. SOLA, 9, 7983, https://doi.org/10.2151/sola.2013-018.

    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., S.-Y. Ogino, P.-M. Wu, H. Jun-Ichi, S. Mori, J. Matsumoto, and F. Syamsudin, 2018: Maritime Continent coastlines controlling Earth’s climate. Prog. Earth Planet. Sci., 5, 21, https://doi.org/10.1186/s40645-018-0174-9.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., S. Otsuka, N. J. Trilaksono, and T. W. Hadi, 2017: Recent progress in research on the Maritime Continent monsoon. The Global Monsoon System: Research and Forecast, 3rd ed. C.-P. Chang et al., Eds., World Scientific, 6377.

  • Yoneyama, K., and C. Zhang, 2020: Years of the Maritime Continent. Geophys. Res. Lett., 47, e2020GL087182, https://doi.org/10.1029/2020GL087182.

All Time Past Year Past 30 Days
Abstract Views 357 357 19
Full Text Views 122 122 5
PDF Downloads 91 91 6

Diurnal and Seasonal Variability of Near-Surface Temperature and Humidity in the Maritime Continent

P. T. MayaMonash University, Clayton, Victoria, Australia

Search for other papers by P. T. May in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1653-7975
,
B. TrewinbBureau of Meteorology, Docklands, Victoria, Australia

Search for other papers by B. Trewin in
Current site
Google Scholar
PubMed
Close
,
J. R. NairncUniversity of Adelaide, Adelaide, South Australia, Australia

Search for other papers by J. R. Nairn in
Current site
Google Scholar
PubMed
Close
,
B. OstendorfcUniversity of Adelaide, Adelaide, South Australia, Australia

Search for other papers by B. Ostendorf in
Current site
Google Scholar
PubMed
Close
,
Chun-Hsu SubBureau of Meteorology, Docklands, Victoria, Australia

Search for other papers by Chun-Hsu Su in
Current site
Google Scholar
PubMed
Close
, and
A. MoisedCentre for Climate Research Singapore, Singapore

Search for other papers by A. Moise in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work examines the diurnal and seasonal variability of near-surface temperature and humidity at several large areas with high population density within the Maritime Continent using the Bureau of Meteorology Atmospheric Regional Reanalysis (BARRA) 12-km-resolution dataset that covers the period 1990–2019. The diurnal cycle is examined in detail, with a key feature being the relatively small diurnal variation of the wet-bulb temperature TWB when compared with the temperature and dewpoint temperature TD. The diurnal variability is strongly modulated by the monsoons with their increased rainfall and cloud cover. The near-surface signals associated with the Madden–Julian oscillation across the domains are relatively weak. Dry and humid temperature extremes are examined for regional and seasonal variability. The dry and moist variable extremes occur at different times of year, but each have spatially coherent structure.

Significance Statement

This paper examines the climatological variations of near-surface temperature and humidity and their extremes in four locations in the “Maritime Continent.” This is important because there are significant variations potentially affecting human and ecosystem health and its resilience to climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter May, peter.may@monash.edu

Abstract

This work examines the diurnal and seasonal variability of near-surface temperature and humidity at several large areas with high population density within the Maritime Continent using the Bureau of Meteorology Atmospheric Regional Reanalysis (BARRA) 12-km-resolution dataset that covers the period 1990–2019. The diurnal cycle is examined in detail, with a key feature being the relatively small diurnal variation of the wet-bulb temperature TWB when compared with the temperature and dewpoint temperature TD. The diurnal variability is strongly modulated by the monsoons with their increased rainfall and cloud cover. The near-surface signals associated with the Madden–Julian oscillation across the domains are relatively weak. Dry and humid temperature extremes are examined for regional and seasonal variability. The dry and moist variable extremes occur at different times of year, but each have spatially coherent structure.

Significance Statement

This paper examines the climatological variations of near-surface temperature and humidity and their extremes in four locations in the “Maritime Continent.” This is important because there are significant variations potentially affecting human and ecosystem health and its resilience to climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter May, peter.may@monash.edu
Save