Observed and Modeled Urban Heat Island and Sea-Breeze Circulation Interactions: A Shanghai Case Study

Yan Hu aShanghai Ecological Forecasting and Remote Sensing Center, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Yan Hu in
Current site
Google Scholar
PubMed
Close
,
Jianguo Tan bKey Laboratory of Cities’ Mitigation and Adaptation to Climate Change in Shanghai, Shanghai Climate Center, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jianguo Tan in
Current site
Google Scholar
PubMed
Close
,
Sue Grimmond cDepartment of Meteorology, University of Reading, United Kingdom

Search for other papers by Sue Grimmond in
Current site
Google Scholar
PubMed
Close
,
Xiangyu Ao aShanghai Ecological Forecasting and Remote Sensing Center, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Xiangyu Ao in
Current site
Google Scholar
PubMed
Close
,
Yafei Yan dSchool of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China

Search for other papers by Yafei Yan in
Current site
Google Scholar
PubMed
Close
, and
Dongwei Liu aShanghai Ecological Forecasting and Remote Sensing Center, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Dongwei Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Urban heat island (UHI) and sea–land-breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local-scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting Model with a single-layer urban canopy model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea-breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4 h and is strongest between 1200 and 1400 local time (UTC + 8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion, and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: ∼20 km/∼1.5 km/∼3 h) with thermal vertical motions (∼1.5 m s−1) above the urban area and an SBC (horizontal/vertical/time scales: 6–7 km/∼1 km/2–3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) ∼5 km from the coast that penetrates ∼20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summertime urban heating in coastal megacities, such as Shanghai.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianguo Tan, jianguot@21cn.com

Abstract

Urban heat island (UHI) and sea–land-breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local-scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting Model with a single-layer urban canopy model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea-breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4 h and is strongest between 1200 and 1400 local time (UTC + 8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion, and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: ∼20 km/∼1.5 km/∼3 h) with thermal vertical motions (∼1.5 m s−1) above the urban area and an SBC (horizontal/vertical/time scales: 6–7 km/∼1 km/2–3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) ∼5 km from the coast that penetrates ∼20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summertime urban heating in coastal megacities, such as Shanghai.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianguo Tan, jianguot@21cn.com
Save
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2016a: Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int. J. Climatol., 36, 46084624, https://doi.org/10.1002/joc.4657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., C. S. B. Grimmond, D. Liu, Z. Han, P. Hu, Y. Wang, X. Zhen, and J. Tan, 2016b: Radiation fluxes in a business district of Shanghai, China. J. Appl. Meteor. Climatol., 55, 24512468, https://doi.org/10.1175/JAMC-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2018: Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a dense urban site in Shanghai: Sensitivity to anthropogenic heat and irrigation. J. Hydrometeor., 19, 19832005, https://doi.org/10.1175/JHM-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X. , and Coauthors, 2019a: Synergistic interaction between urban heat island and heat waves and its impact factors in Shanghai (in Chinese). Acta Geogr. Sin., 74, 17891802, https://doi.org/10.11821/dlxb201909007.

    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2019b: Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. J. Appl. Meteor. Climatol., 58, 19551972, https://doi.org/10.1175/JAMC-D-19-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and C. S. B. Grimmond, 2015: Key conclusions of the First International Urban Land Surface Model Comparison Project. Bull. Amer. Meteor. Soc., 96, 805819, https://doi.org/10.1175/BAMS-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Block, A., K. Keuler, and E. Schaller, 2004: Impacts of anthropogenic heat on regional climate patterns. Geophys. Res. Lett., 31, L12211, https://doi.org/10.1029/2004GL019852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and D. S. Johnson, 1977: Urban-rural wind velocity differences. Atmos. Environ., 11, 597604, https://doi.org/10.1016/0004-6981(77)90112-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011a: The integrated WRF/urban modeling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J. Bao, and H. Kusaka, 2011b: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, F., and D. W. Byun, 2008: Application of high resolution and use and land cover data for atmospheric modeling in the Houston–Galveston metropolitan area. Part I: Meteorological simulation results. Atmos. Environ., 42, 77957811, https://doi.org/10.1016/j.atmosenv.2008.04.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, P. P., and S. Raman, 2005: Observations and numerical simulations of urban heat island and sea breeze circulations over New York City. Pure Appl. Geophys., 162, 19551980, https://doi.org/10.1007/s00024-005-2700-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, W. B., and Coauthors, 2006: MODIS land cover and LAI collection 4 product quality across nine states in the Western Hemisphere. IEEE Trans. Geosci. Remote Sens., 44, 18431857, https://doi.org/10.1109/TGRS.2006.876026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, https://doi.org/10.1007/s10546-010-9517-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, and N. Soulakellis, 2009: The influence of the city of Athens on the evolution of the sea-breeze front. Bound.-Layer Meteor., 131, 3551, https://doi.org/10.1007/s10546-008-9306-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J. J., Y. C. Wang, R. D. Bornstein, and S. G. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94104, https://doi.org/10.1175/JAMC-D-13-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Feudo, T. L., and Coauthors, 2015: Comparison of hourly solar radiation from a ground–based station, remote sensing and weather forecast models at a coastal site of south Italy (Lamezia Terme). Energy Procedia, 76, 148155, https://doi.org/10.1016/j.egypro.2015.07.884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, E. D., C. M. Rozoff, W. R. Cotton, and P. L. S. Dias, 2007: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound.-Layer Meteor., 122, 4365, https://doi.org/10.1007/s10546-006-9091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabey, A. M., C. S. B. Grimmond, and I. Capel-Timms, 2018: Anthropogenic heat flux: Advisable spatial resolutions when input data are scarce. Theor. Appl. Climatol., 135, 791807, https://doi.org/10.1007/s00704-018-2367-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, https://doi.org/10.1007/BF00120524.

  • Garratt, J. R., 1994: Monin–Obukhov similarity theory: The non-neutral surface layer. The Atmospheric Boundary Layer, Cambridge University Press, 4960.

    • Search Google Scholar
    • Export Citation
  • Giovannini, L., D. Zardi, M. de Franceschi, and F. Chen, 2014: Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol., 34, 11111131, https://doi.org/10.1002/joc.3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and H. C. Ward, 2021: Urban observations. Springer Handbook of Atmospheric Measurements, T. Foken, Ed., Springer Handbooks, 13971429, https://doi.org/10.1007/978-3-030-52171-4_52.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., T. R. Oke, and H. A. Cleugh, 1993: The role of “rural” in comparisons of observed suburban-rural flux differences. IAHS Publ., 212, 165174.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., J. A. Salmond, T. R. Oke, B. Offerle, and A. Lemonsu, 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res., 109, D24101, https://doi.org/10.1029/2004JD004936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, https://doi.org/10.1175/2010JAMC2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the International Urban Energy Balance Model Comparison. Int. J. Climatol., 31, 244272, https://doi.org/10.1002/joc.2227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2020: Integrated urban hydrometeorological, climate and environmental services: Concept, methodology and key messages. Urban Climate, 33, 22120955, https://doi.org/10.1016/j.uclim.2020.100623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, W., J. Zhang, J. Tan, J. Dai, and C. Yue, 2017: Characteristics and circulation background of Shanghai summer sea breeze front and its induced convection (in Chinese). J. Trop. Meteor., 33, 644653.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, E., J. E. Gonzalez, A. Martilli, and R. Bornstein, 2015: On the anthropogenic heat fluxes using an air conditioning evaporative cooling parameterization for mesoscale urban canopy models. J. Sol. Energy Eng., 137, 051005, https://doi.org/10.1115/1.4030854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, S., X. Lee, J. Wang, and K. Wang, 2019: Amplified urban heat islands during heat wave periods. J. Geophys. Res. Atmos., 124, 77977812, https://doi.org/10.1029/2018JD030230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, C., S. Grimmond, J. Barlow, D. Gatey, S. Kotthaus, F. Lindberg, and C. H. Halios, 2017: Evaluation of urban local-scale aerodynamic parameters: Implications for the vertical profile of wind speed and for source areas. Bound.-Layer Meteor., 164, 183213, https://doi.org/10.1007/s10546-017-0248-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 21272143, https://doi.org/10.5194/acp-11-2127-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroyer, S., S. Bélair, S. Z. Husain, and J. Mailhot, 2014: Subkilometer numerical weather prediction in an urban coastal area: A case study over the Vancouver metropolitan area. J. Appl. Meteor. Climatol., 53, 14331453, https://doi.org/10.1175/JAMC-D-13-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, https://doi.org/10.1175/JAMC-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high‐resolution numerical simulation of urban heat islands. Environ. Res. Lett., 9, 055001, https://doi.org/10.1088/1748-9326/9/5/055001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. L. Baeck, S. Jessup, and J. A. Smith, 2013a: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, https://doi.org/10.1175/JHM-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013b: Development and evaluation of a mosaic approach in the WRF-Noah framework. J. Geophys. Res. Atmos., 118, 11 91811 935, https://doi.org/10.1002/2013JD020657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., J. Shu, and J. Tan, 2015a: A numerical simulation experiment of an urban summer heat wave based on modified data of land-use and anthropogenic heat (in Chinese) J. Trop. Meteor., 31, 364373.

    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015b: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Wang, and Z. Gao, 2016: Changes in wind speed under heat waves enhance urban heat islands in the Beijing metropolitan area. J. Appl. Meteor. Climatol., 55, 23692375, https://doi.org/10.1175/JAMC-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., T. Wang, M. Xie, B. Zhuang, S. Li, Y. Han, and N. Cheng, 2017: Modeling of urban heat island and its impacts on thermal circulations in the Beijing-Tianjin-Hebei region, China. Theor. Appl. Climatol., 128, 9991013, https://doi.org/10.1007/s00704-016-1903-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindberg, F., C. S. B. Grimmond, N. Yogeswaran, S. Kotthaus, and L. Allen, 2013: Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015. Urban Climate, 4, 115, https://doi.org/10.1016/j.uclim.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, D., and Coauthors, 2018: A new model to downscale urban and rural surface and air temperatures evaluated in Shanghai, China. J. Appl. Meteor. Climatol., 57, 22672283, https://doi.org/10.1175/JAMC-D-17-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., and Coauthors, 2010: Trade-offs and responsiveness of the single-layer urban canopy parameterization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Quart. J. Roy. Meteor. Soc., 136, 9971019, https://doi.org/10.1002/qj.614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., F. Lindberg, O. Jorba, S. Kotthaus, S. Grossman-Clarke, and C. S. B. Grimmond, 2013: High resolution simulation of surface heat flux variability across central London with urban zones for energy partitioning. Bound.-Layer Meteor., 147, 493523, https://doi.org/10.1007/s10546-013-9797-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor. Climatol., 41, 12471266, https://doi.org/10.1175/1520-0450(2002)041<1247:NSOUIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, D., and Coauthors, 2020: WRF-TEB: implementation and evaluation of the coupled Weather Research and Forecasting (WRF) and Town Energy Balance (TEB) model. J. Adv. Model. Earth Syst., 12, e2019MS00196, https://doi.org/10.1029/2019MS001961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. Lemone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. T., B. D. Keim, R. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • MODIS, 2017: MODIS land cover type/dynamics. NASA, accessed 1 June 2018, http://modis.gsfc.nasa.gov/data/dataprod/mod12.php.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Narumi, D., A. Kondo, and Y. Shimoda, 2009: Effects of anthropogenic heat release upon the urban climate in a Japanese megacity. Environ. Res., 109, 421431, https://doi.org/10.1016/j.envres.2009.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2017: Research data archive. NCAR/UCAR, accessed on 1 July 2017, http://rda.ucar.edu/datasets/ds083.2/.

  • NOAA, 2017: NCEP SST analysis. NCEP, accessed 1 July 2017, https://polar.ncep.noaa.gov/sst/.

  • Ohashi, Y., and H. Kida, 2002: Effects of mountains and urban areas on daytime local-circulations in the Osaka and Kyoto regions. J. Meteor. Soc. Japan, 80, 539560, https://doi.org/10.2151/jmsj.80.539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1978: Boundary Layer Climates. Routledge, 435 pp.

  • Oke, T. R., 1981: Canopy geometry and nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol., 1, 237254, https://doi.org/10.1002/joc.3370010304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 546 pp., https://doi.org/10.1017/9781139016476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., 1994: Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model. J. Climate, 7, 18561869, https://doi.org/10.1175/1520-0442(1994)007<1856:ATSOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, S. M., T. R. Oke, C. S. B. Grimmond, and J. A. Voogt, 2006: Comparison of four methods to estimate urban heat storage. J. Appl. Meteor. Climatol., 45, 17661781, https://doi.org/10.1175/JAM2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., and T. R. Oke, 1994: Comparison of modelled and “measured heat storage in suburban terrain.” Contrib. Atmos. Phys., 67, 149156.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., C. Arbizu-Barrena, F. J. Santos-Alamillos, J. Tovar-Pescador, and D. Pozo-Vázquez, 2016: Assessing the surface solar radiation budget in the WRF Model: A spatiotemporal analysis of the bias and its causes. Mon. Wea. Rev., 144, 703711, https://doi.org/10.1175/MWR-D-15-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y. H., and J. J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784801, https://doi.org/10.1175/JAMC-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189199, https://doi.org/10.1002/joc.2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, https://doi.org/10.1175/2010JAMC2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Z., J. Shi, J. Tan, and H. Yang, 2020: The migration of the warming center and urban heat island effect in Shanghai during urbanization. Front. Earth Sci., 8, 340, https://doi.org/10.3389/feart.2020.00340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, https://doi.org/10.1007/s10546-010-9583-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: “Local climate zones” for urban temperatures studies. Bull. Amer. Meteor. Soc., 93, 18791900, https://doi.org/10.1175/BAMS-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strassberg, D., M. A. LeMone, T. T. Warner, and J. G. Alfieri, 2008: Comparison of observed 10-m wind speeds to those based on Monin–Obukhov similarity theory using IHOP_2002 aircraft and surface data. Mon. Wea. Rev., 136, 964972, https://doi.org/10.1175/2007MWR2203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., X. Zhi, J. Bian, R. Li, and J. Sun, 2014: Research on the influence of precipitation on traffic characteristics of urban expressway in Shanghai (in Chinese). Atmos. Sci. Res. Appl., 1, 6876.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and P. Hu, 2009: Study on real time quality control system of Shanghai automatic weather station (in Chinese). Meteor. Hydrol. Mar. Instrum., 4, 3841.

    • Search Google Scholar
    • Export Citation
  • Tan, J. G., and Coauthors, 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, https://doi.org/10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J. G., and Coauthors, 2015: Urban integrated meteorological observations: Practice and experience in Shanghai, China. Bull. Amer. Meteor. Soc., 96, 85102, https://doi.org/10.1175/BAMS-D-13-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theeuwes, N. E., R. J. Ronda, I. N. Harman, A. Christen, and C. S. B. Grimmond, 2019: Parameterizing horizontally averaged wind and temperature profiles in the urban roughness sublayer. Bound.-Layer Meteor., 173, 321348, https://doi.org/10.1007/s10546-019-00472-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., T. Holt, and J. Pullen, 2007: Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteor. Soc., 133, 579594, https://doi.org/10.1002/qj.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsiringakis, A., G.-J. Steeneveld, A. A. M. Holtslag, S. Kotthaus, and S. Grimmond, 2019: On- and off-line evaluation of the single-layer urban canopy model in London summertime conditions. Quart. J. Roy. Meteor. Soc., 145, 14741489, https://doi.org/10.1002/qj.3505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umezaki, A. S., F. N. D. Ribeiro, A. P. de Oliveira, J. Soares, and R. M. de Miranda, 2020: Numerical characterization of spatial and temporal evolution of summer urban heat island intensity in São Paulo, Brazil. Urban Climate, 32, 100615, https://doi.org/10.1016/j.uclim.2020.100615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varquez, A. C., M. Nakayoshi, and M. Kanda, 2015: The effects of highly detailed urban roughness parameters on a sea-breeze numerical simulation. Bound.-Layer Meteor., 154, 449469, https://doi.org/10.1007/s10546-014-9985-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Di Sabatino, A. Martilli, Y. Li, M. S. Wong, E. Gutiérrez, and P. W. Chan, 2017: Impact of land surface heterogeneity on urban heat island circulation and sea-land breeze circulation in Hong Kong. J. Geophys. Res. Atmos., 122, 43324352, https://doi.org/10.1002/2017JD026702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., E. Bou-Zeid, S. Au, and J. Smith, 2011: Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 17951814, https://doi.org/10.1175/2011JAMC2685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2021: Urban heat island. https://community.wmo.int/activity-areas/urban/urban-heat-island.

  • WRF, 2017: WPS V3 geographical static data downloads. UCAR, accessed 1 June 2017, https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html.

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1990: Vertical structure of the sea breeze penetrating through a large urban complex. J. Appl. Meteor., 29, 878891, https://doi.org/10.1175/1520-0450(1990)029<0878:VSOTSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteor., 31, 11461164, https://doi.org/10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, C., J. Chi-Hung Fung, and W. P. Tse, 2019: Response of the sea breeze to urbanization in the Pearl River delta region. J. Appl. Meteor. Climatol., 58, 14491463, https://doi.org/10.1175/JAMC-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014a: Strong contributions of local background climate to urban heat islands. Nature, 511, 216219, https://doi.org/10.1038/nature13462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., N. Zhang, J. Sun, and J. Zou, 2014b: Evaluation and parameter-sensitivity study of a single-layer urban canopy model (SLUCM) with measurements in Nanjing, China. J. Hydrometeor., 15, 10781090, https://doi.org/10.1175/JHM-D-13-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 638 0 0
Full Text Views 2955 1960 70
PDF Downloads 1292 491 42