Environmental Response in Coupled Energy and Water Cloud Impact Parameters Derived from A-Train Satellites, ERA-Interim, and MERRA-2

Lu Sun aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas
bDepartment of Physics, University of Auckland, Auckland, New Zealand

Search for other papers by Lu Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6067-7978
,
Anita D. Rapp aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Anita D. Rapp in
Current site
Google Scholar
PubMed
Close
,
Tristan S. L’Ecuyer cDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
dCenter for Climate Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Anne S. Daloz cDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
dCenter for Climate Research, University of Wisconsin–Madison, Madison, Wisconsin
eCICERO Center for International Climate Research, Oslo, Norway

Search for other papers by Anne S. Daloz in
Current site
Google Scholar
PubMed
Close
, and
Ethan Nelson cDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Ethan Nelson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the connections between latent heating from precipitation and cloud radiative effects is essential for accurately parameterizing cross-scale links between cloud microphysics and global energy and water cycles in climate models. Although commonly examined separately, this study adopts two cloud impact parameters (CIPs), the surface radiative cooling efficiency Rc and atmospheric radiative heating efficiency Rh, that explicitly couple cloud radiative effects and precipitation to characterize how efficiently precipitating cloud systems influence the energy budget and water cycle using A-Train observations and two reanalyses. These CIPs exhibit distinct global distributions that suggest cloud energy and water cycle coupling are highly dependent on cloud regime. The dynamic regime ω500 controls the sign of Rh, whereas column water vapor (CWV) appears to be the larger control on the magnitude. The magnitude of Rc is highly coupled to the dynamic regime. Observations show that clouds cool the surface very efficiently per unit rainfall at both low and high sea surface temperature (SST) and CWV, but reanalyses only capture the former. Reanalyses fail to simulate strong Rh and moderate Rc in deep convection environments but produce stronger Rc and Rh than observations in shallow, warm rain systems in marine stratocumulus regions. Although reanalyses generate fairly similar climatologies in the frequency of environmental states, the response of Rc and Rh to SST and CWV results in systematic differences in zonal and meridional gradients of cloud atmospheric heating and surface cooling relative to A-Train observations that may have significant implications for global circulations and cloud feedbacks.

Significance Statement

Studying climate change requires understanding coupled interactions between clouds, precipitation, and their environment. Here we calculate two parameters to reveal how efficiently clouds can heat the atmosphere or cool the surface per unit rain. The satellite observations and reanalyses show similar global patterns, but there are some differences in areas of deep convection and low cloud regions. Examination of these parameters as a function of their environment shows that reanalyses cool the atmosphere too much per unit rain in environments with low sea surface temperatures and water vapor. Vertical velocity determines whether clouds heat or cool the atmosphere. Both observations and reanalyses suggest that water vapor is the stronger control on how much clouds heat the atmosphere per unit rain.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lu Sun, lusun@tamu.edu

Abstract

Understanding the connections between latent heating from precipitation and cloud radiative effects is essential for accurately parameterizing cross-scale links between cloud microphysics and global energy and water cycles in climate models. Although commonly examined separately, this study adopts two cloud impact parameters (CIPs), the surface radiative cooling efficiency Rc and atmospheric radiative heating efficiency Rh, that explicitly couple cloud radiative effects and precipitation to characterize how efficiently precipitating cloud systems influence the energy budget and water cycle using A-Train observations and two reanalyses. These CIPs exhibit distinct global distributions that suggest cloud energy and water cycle coupling are highly dependent on cloud regime. The dynamic regime ω500 controls the sign of Rh, whereas column water vapor (CWV) appears to be the larger control on the magnitude. The magnitude of Rc is highly coupled to the dynamic regime. Observations show that clouds cool the surface very efficiently per unit rainfall at both low and high sea surface temperature (SST) and CWV, but reanalyses only capture the former. Reanalyses fail to simulate strong Rh and moderate Rc in deep convection environments but produce stronger Rc and Rh than observations in shallow, warm rain systems in marine stratocumulus regions. Although reanalyses generate fairly similar climatologies in the frequency of environmental states, the response of Rc and Rh to SST and CWV results in systematic differences in zonal and meridional gradients of cloud atmospheric heating and surface cooling relative to A-Train observations that may have significant implications for global circulations and cloud feedbacks.

Significance Statement

Studying climate change requires understanding coupled interactions between clouds, precipitation, and their environment. Here we calculate two parameters to reveal how efficiently clouds can heat the atmosphere or cool the surface per unit rain. The satellite observations and reanalyses show similar global patterns, but there are some differences in areas of deep convection and low cloud regions. Examination of these parameters as a function of their environment shows that reanalyses cool the atmosphere too much per unit rain in environments with low sea surface temperatures and water vapor. Vertical velocity determines whether clouds heat or cool the atmosphere. Both observations and reanalyses suggest that water vapor is the stronger control on how much clouds heat the atmosphere per unit rain.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lu Sun, lusun@tamu.edu

Supplementary Materials

    • Supplemental Materials (PDF 794 KB)
Save
  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation–moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., C. Schumacher, Z. Feng, and S. Hagos, 2016: A retrieval of tropical latent heating using the 3D structure of precipitation features. J. Appl. Meteor. Climatol., 55, 19651982, https://doi.org/10.1175/JAMC-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., 2009: Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J. Climate, 22, 31273145, https://doi.org/10.1175/2008JCLI2616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/NATURE01092.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and G. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, https://doi.org/10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, https://doi.org/10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., J.-L. Dufresne, H. Le Treui, J.-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, https://doi.org/10.1007/s00382-003-0369-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA/TM-2015-104606/Vol. 43, 139 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note 9, 73 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., R. Roca, T. Fiolleau, and E. Poan, 2016: Macrophysical, microphysical, and radiative properties of tropical mesoscale convective systems along their life cycle. J. Climate, 29, 33533371, https://doi.org/10.1175/JCLI-D-15-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled walker circulation using the weak temperature gradient approximation. J. Climate, 15, 29072920, https://doi.org/10.1175/1520-0442(2002)015<2907:ASMOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models. Wiley Interdiscip. Rev.: Climate Change, 8, e465, https://doi.org/10.1002/wcc.465.

    • Search Google Scholar
    • Export Citation
  • Choi, Y.-S., C.-H. Ho, C.-E. Park, T. Storelvmo, and I. Tan, 2014: Influence of cloud phase composition on climate feedbacks. J. Geophys. Res. Atmos., 119, 36873700, https://doi.org/10.1002/2013JD020582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and T.-C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, https://doi.org/10.1175/MWR3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., S. M. J. Nowicki, B. Zhao, and M. J. Suarez, 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 48354856, https://doi.org/10.1175/JCLI-D-13-00635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, F., R. Yu, X. Zhang, Y. Yu, and J. Li, 2003: The impact of low-level cloud over the eastern subtropical Pacific on the “double ITCZ” in LASG FGCM-0. Adv. Atmos. Sci., 20, 461474, https://doi.org/10.1007/BF02690804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A., E. Nelson, T. L’Ecuyer, A. Rapp, and L. Sun, 2018: Assessing the coupled influences of clouds on the atmospheric energy and water cycles in reanalyses with A-Train observations. J. Climate, 31, 82418264, https://doi.org/10.1175/JCLI-D-17-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, https://doi.org/10.1126/science.1192546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinh, T., and S. Fueglistaler, 2017: Mechanism of fast atmospheric energetic equilibration following radiative forcing by CO2. J. Adv. Model. Earth Syst., 9, 24682482, https://doi.org/10.1002/2017MS001116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, and B. Xi, 2016: Evaluation and intercomparison of clouds, precipitation and radiation budgets in recent reanalyses using satellite-surface observations. Climate Dyn., 46, 21232144, https://doi.org/10.1007/s00382-015-2693-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eitzen, Z., K. Xu, and T. Wong, 2011: An estimate of low-cloud feedbacks from variations of cloud radiative and physical properties with sea surface temperature on interannual time scales. J. Climate, 24, 11061121, https://doi.org/10.1175/2010JCLI3670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, https://doi.org/10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Hydrology Resource Center/MSFC/NASA, 2009: AMSR-E L2 Rainfall Subset, collocated with CloudSat track V002. Goddard Earth Sciences Data and Information Services Center, accessed 1 September 2017, https://disc.gsfc.nasa.gov/datacollection/AMSRERR_CPR_002.html.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344, https://doi.org/10.1256/qj.04.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griggs, J., and J. Bamber, 2008: Assessment of cloud cover characteristics in satellite datasets and reanalysis products for Greenland. J. Climate, 21, 18371849, https://doi.org/10.1175/2007JCLI1570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34, L09811, https://doi.org/10.1029/2007GL029335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ECMWF ERA Rep. Series 27, 63 pp., https://www.ecmwf.int/node/18765.

    • Search Google Scholar
    • Export Citation
  • Hill, P. G., R. P. Allan, J. C. Chiu, and T. H. Stein, 2016: A multisatellite climatology of clouds, radiation, and precipitation in southern West Africa and comparison to climate models. J. Geophys. Res. Atmos., 121, 10 85710 879, https://doi.org/10.1002/2016JD025246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., 2019: The global radiative energy budget in MERRA and MERRA-2: Evaluation with respect to CERES EBAF data. J. Climate, 32, 19731994, https://doi.org/10.1175/JCLI-D-18-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., and C. Schumacher, 2017: Assessing the vertical latent heating structure of the east Pacific ITCZ using the CloudSat CPR and TRMM CPR. J. Climate, 31, 25632577, https://doi.org/10.1175/JCLI-D-17-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itterly, K. F., and P. C. Taylor, 2014: Evaluation of the tropical TOA flux diurnal cycle in MERRA and ERA-Interim retrospective analyses. J. Climate, 27, 47814796, https://doi.org/10.1175/JCLI-D-13-00737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein, 2000: A parametrization of the effects of cloud and precipitation overlap for use in general-circulation models. Quart. J. Roy. Meteor. Soc., 126, 25252544, https://doi.org/10.1002/qj.49712656809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18, 12031215, https://doi.org/10.1175/JCLI3326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, https://doi.org/10.1175/JCLI-D-11-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-S. Ahn, I.-S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, https://doi.org/10.1175/JCLI-D-14-00767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and M. J. Alexander, 2013: Tropical precipitation variability and convectively coupled equatorial waves on submonthly time scales in reanalyses and TRMM. J. Climate, 26, 30133030, https://doi.org/10.1175/JCLI-D-12-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projections. J. Climate, 28, 2035, https://doi.org/10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhler, M., M. Ahlgrimm, and A. C. M. Beljaars, 2011: Unified treatment of dry convective and stratocumulus-topped boundary layers in the ECMWF model. Quart. J. Roy. Meteor. Sci., 137, 4357, https://doi.org/10.1002/qj.713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, J. L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 61526174, https://doi.org/10.1175/JCLI-D-11-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. J. Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K., and D. L. Hartmann, 2003a: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part I: Sensitivity to uniform sea surface temperature changes. J. Climate, 16, 14251440, https://doi.org/10.1175/1520-0442(2003)016<1425:IACWVR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K., and D. L. Hartmann, 2003b: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part II: Sensitivity to spatial gradients of sea surface temperature. J. Climate, 16, 14411455, https://doi.org/10.1175/1520-0442(2003)016<1441:IACWVR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12, 23592374, https://doi.org/10.1175/1520-0442(1999)012<2359:TROCWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, https://doi.org/10.1029/2011JD016076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., T. S. L’Ecuyer, D. Vane, G. Stephens, and D. Reinke, 2011: Level 2C RAIN-PROFILE product process description and interface control document, algorithm version 0.0. JPL Rep., 14 pp., https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2c-rain-profile/2C-RAIN-PROFILE-PDICD.P_R04.20110620.pdf.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J. Climate, 20, 45484571, https://doi.org/10.1175/JCLI4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, https://doi.org/10.1063/1.3463626.

  • L’Ecuyer, T. S., H. Masunaga, and C. Kummerow, 2006: Variability in the characteristics of precipitation systems in the tropical Pacific. Part II: Implications for atmospheric heating. J. Climate, 19, 13881406, https://doi.org/10.1175/JCLI3698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates dataset. J. Geophys. Res., 113, D00A15, https://doi.org/10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., G. McGarragh, P. Gabriel, and D. Henderson, 2011: Improving estimates of the earth’s radiation budget with multispectral and hyperspectral satellite observations. Hyperspectral Imaging and Sounding of the Environment, Toronto, ON, Canada, Optical Society of America, HWB1, https://www.osapublishing.org/abstract.cfm?URI=HISE-2011-HWB1.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14 21914 233, https://doi.org/10.1029/2001JD900143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. L., X. H. Zhang, Y. Q. Yu, and F. S. Dai, 2004: Primary reasoning behind the double ITCZ phenomenon in a coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 21, 857867, https://doi.org/10.1007/BF02915588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and J. R. Key, 2016: Assessment of Arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. J. Climate, 29, 60656083, https://doi.org/10.1175/JCLI-D-15-0861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat Radar–Lidar Geometrical Profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and S. Benson, 2017: Diagnosing cloud microphysical process information from remote sensing measurements—A feasibility study using aircraft data. Part I: Tropical anvils measured during TC4. J. Appl. Meteor. Climatol., 56, 633649, https://doi.org/10.1175/JAMC-D-16-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and T. S. L’Ecuyer, 2011: Equatorial asymmetry of the east Pacific ITCZ: Observational constraints on the underlying processes. J. Climate, 24, 17841800, https://doi.org/10.1175/2010JCLI3854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, H., X. Wang, Y. Liu, and G. Wu, 2019: An evaluation of cloud vertical structure in three reanalyses against CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmos. Sci. Lett., 20, e906, https://doi.org/10.1002/asl.906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, https://doi.org/10.1175/JCLI-D-13-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., R. P. Allan, M. P. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, https://doi.org/10.1007/s10712-011-9159-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, https://doi.org/10.1175/JCLI-D-13-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, https://doi.org/10.1038/nphys314.

  • Previdi, M., 2010: Radiative feedbacks on global precipitation. Environ. Res. Lett., 5, 025211, https://doi.org/10.1088/1748-9326/5/2/025211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement, 2016: Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nat. Geosci., 9, 106110, https://doi.org/10.1038/ngeo2630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589662.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: The global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16, 39783992, https://doi.org/10.1175/1520-0442(2003)016<3978:ASTMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., C. Schlundt, S. Stapelberg, O. Sus, S. Eliasson, U. Willén, and J. F. Meirink, 2018: Comparing ERA-Interim clouds with satellite observations using a simplified satellite simulator. Atmos. Chem. Phys. Discuss., 18, 17 60117 614, https://doi.org/10.5194/acp-18-17601-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, https://doi.org/10.1175/2008JCLI2144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L’Ecuyer, and M. Lebsock, 2017: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/BAMS-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, https://doi.org/10.1126/science.1237554.

  • Sun, L., 2019: Cloud impact parameters derived from A-Train satellite, ERA-Interim, MERRA-2 and their relationship to the environment. M.S. thesis, Texas A&M University, 57 pp.

    • Search Google Scholar
    • Export Citation
  • Tobin, I., S. Bony, and R. Roca, 2012: Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J. Climate, 25, 68856904, https://doi.org/10.1175/JCLI-D-11-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, C. O’Dell, and T. Wong, 2010: Relationships between tropical sea surface temperature and top-of-atmosphere radiation. Geophys. Res. Lett., 37, L03702, https://doi.org/10.1029/2009GL042314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability. I: Austral summer and the Madden–Julian oscillation. J. Geophys. Res., 108, 3160, https://doi.org/10.1029/2002JC001620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, https://doi.org/10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214, https://doi.org/10.1109/TGRS.2002.808312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wright, J. S., and Coauthors, 2020: Differences in tropical high clouds among reanalyses: Origins and radiative impacts. Atmos. Chem. Phys., 20, 89899030, https://doi.org/10.5194/acp-20-8989-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., A. Cheng, and M. Zhang, 2010: Cloud-resolving simulation of low-cloud feedback to an increase in sea surface temperature. J. Atmos. Sci., 67, 730748, https://doi.org/10.1175/2009JAS3239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12, 33053318, https://doi.org/10.1175/1520-0442(1999)012<3305:LBAVOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., R. D. Cess, and S. C. Xie, 1996: Relationship between cloud radiative forcing and sea surface temperatures over the entire tropical oceans. J. Climate, 9, 13741384, https://doi.org/10.1175/1520-0442(1996)009<1374:RBCRFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 365 0 0
Full Text Views 2725 2403 189
PDF Downloads 313 100 6