Air Temperature Variability in High-Elevation Glacierized Regions: Observations from Six Catchments on the Tibetan Plateau

Wei Yang aState Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
bCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China

Search for other papers by Wei Yang in
Current site
Google Scholar
PubMed
Close
,
Meilin Zhu aState Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Meilin Zhu in
Current site
Google Scholar
PubMed
Close
,
Xiaofeng Guo cState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaofeng Guo in
Current site
Google Scholar
PubMed
Close
, and
Huabiao Zhao aState Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
bCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
dNgari Station for Desert Environment Observation and Research, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Tibet, China

Search for other papers by Huabiao Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers, and 6 national meteorological stations in 6 different catchments, this study presents air temperature variability in different glacierized and nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold and dry northwestern Tibetan Plateau and the lowest LRs located on the warm and humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree-days, particularly with respect to large glaciers with a long-flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Yang, yangww@itpcas.ac.cn; Huabiao Zhao, zhaohb@itpcas.ac.cn

Abstract

Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers, and 6 national meteorological stations in 6 different catchments, this study presents air temperature variability in different glacierized and nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold and dry northwestern Tibetan Plateau and the lowest LRs located on the warm and humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree-days, particularly with respect to large glaciers with a long-flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Yang, yangww@itpcas.ac.cn; Huabiao Zhao, zhaohb@itpcas.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 216 KB)
Save
  • Arendt, A., and Coauthors, 2017: Randolph Glacier Inventory—A dataset of global glacier outlines: Version 6.0. GLIMS Tech. Rep., 71 pp., https://www.glims.org/RGI/00_rgi60_TechnicalNote.pdf.

    • Search Google Scholar
    • Export Citation
  • Ayala, A., F. Pellicciotti, and J. M. Shea, 2015: Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming. J. Geophys. Res. Atmos., 120, 31393157, https://doi.org/10.1002/2015JD023137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blandford, T. R., K. S. Humes, B. J. Harshburger, B. C. Moore, V. P. Walden, and H. C. Ye, 2008: Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. J. Appl. Meteor. Climatol., 47, 249261, https://doi.org/10.1175/2007JAMC1565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bravo, C., D. J. Quincey, A. N. Ross, A. Rivera, B. Brock, E. Miles, and A. Silva, 2019: Air temperature characteristics, distribution, and impact on modeled ablation for the South Patagonia Icefield. J. Geophys. Res. Atmos., 124, 907925, https://doi.org/10.1029/2018JD028857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, F., E. Berthier, P. Wagnon, A. Kääb, and D. Treichler, 2017: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10, 668673, https://doi.org/10.1038/ngeo2999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carturan, L., F. Cazorzi, F. D. Blasi, and G. D. Fontana, 2015: Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): Effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling. Cryosphere, 9, 11291146, https://doi.org/10.5194/tc-9-1129-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, B. H., K. Yang, J. Qin, L. Wang, Y. Y. Chen, and X. B. He, 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154163, https://doi.org/10.1016/j.jhydrol.2014.03.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, K., and Y. Ageta, 2000: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol., 46, 244252, https://doi.org/10.3189/172756500781832945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and M. Sharp, 2009: Sensitivity of net mass-balance estimates to near-surface temperature lapse rates when employing the degree-day method to estimate glacier melt. Ann. Glaciol., 50, 8086, https://doi.org/10.3189/172756409787769663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., M. Sharp, R. M. Koerner, C. Labine, S. Boon, S. J. Marshall, D. O. Burgess, and D. Lewis, 2009: Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. J. Climate, 22, 42814298, https://doi.org/10.1175/2009JCLI2845.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greuell, W., and R. Böhm, 1998: 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. J. Glaciol., 44, 920, https://doi.org/10.1017/S0022143000002306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, W., and Coauthors, 2015: The second Chinese glacier inventory: Data, methods and results. J. Glaciol., 61, 357372, https://doi.org/10.3189/2015JoG14J209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., K. Yang, L. Zhao, W. Yang, S. Li, M. Zhu, T. Yao, and Y. Chen, 2011: Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Bound.-Layer Meteor., 139, 307332, https://doi.org/10.1007/s10546-010-9586-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hock, R., 2003: Temperature index melt modelling in mountain areas. J. Hydrol., 282, 104115, https://doi.org/10.1016/S0022-1694(03)00257-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodgkins, R., S. Carr, F. Palsson, S. Guomundsson, and H. Bjornsson, 2012: Sensitivity analysis of temperature-index melt simulations to near-surface lapse rates and degree-day factors at Vestari-Hagafellsjokull, Langjokull, Iceland. Hydrol. Processes, 26, 37363748, https://doi.org/10.1002/hyp.8458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, M., T. Molg, B. Marzeion, and G. Kaser, 2010: Empirical-statistical downscaling of reanalysis data to high-resolution air temperature and specific humidity above a glacier surface (Cordillera Blanca, Peru). J. Geophys. Res., 115, D12120, https://doi.org/10.1029/2009JD012556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W., L. P. H. Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W., L. Petersen, S. Ragettli, and F. Pellicciotti, 2014: The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50, 22122226, https://doi.org/10.1002/2013WR014506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kääb, A., and Coauthors, 2018: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci., 11, 114120, https://doi.org/10.1038/s41561-017-0039-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattel, D. B., and T. Yao, 2018: Temperature–topographic elevation relationship for high mountain terrain: An example from the southeastern Tibetan Plateau. Int. J. Climatol., 38, e901e920, https://doi.org/10.1002/joc.5418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattel, D. B., T. Yao, W. Yang, Y. Gao, and L. Tian, 2015: Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int. J. Climatol., 35, 44314443, https://doi.org/10.1002/joc.4297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattel, D. B., T. Yao, and P. K. Panday, 2018: Near-surface air temperature lapse rate in a humid mountainous terrain on the southern slopes of the eastern Himalayas. Theor. Appl. Climatol., 132, 11291141, https://doi.org/10.1007/s00704-017-2153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraaijenbrink, P. D. A., M. F. P. Bierkens, A. F. Lutz, and W. W. Immerzeel, 2017: Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549, 257260, https://doi.org/10.1038/nature23878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. H., T. D. Yao, W. Yang, W. S. Yu, and M. L. Zhu, 2016: Melt season hydrological characteristics of the Parlung No. 4 Glacier, in Gangrigabu Mountains, south-east Tibetan Plateau. Hydrol. Processes, 30, 11711191, https://doi.org/10.1002/hyp.10696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. H., T. D. Yao, W. S. Yu, W. Yang, and M. L. Zhu, 2019: Energy and mass balance characteristics of the Guliya ice cap in the West Kunlun Mountains, Tibetan Plateau. Cold Reg. Sci. Technol., 159, 7185, https://doi.org/10.1016/j.coldregions.2018.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., M. J. Sharp, D. O. Burgess, and F. S. Anslow, 2007: Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. Int. J. Climatol., 27, 385398, https://doi.org/10.1002/joc.1396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, T., and Coauthors, 2020: Going to extremes: Installing the world’s highest weather stations on Mount Everest. Bull. Amer. Meteor. Soc., 101, E1870E1890, https://doi.org/10.1175/BAMS-D-19-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, W. Yang, and D. Scherer, 2012: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere, 6, 14451461, https://doi.org/10.5194/tc-6-1445-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2014: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Climate Change, 4, 6873, https://doi.org/10.1038/nclimate2055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2001: Physical basis for the temperature-based melt-index method. J. Appl. Meteor., 40, 753761, https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, L., and F. Pellicciotti, 2011: Spatial and temporal variability of air temperature on a melting glacier: Atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. J. Geophys. Res., 116, D23109, https://doi.org/10.1029/2011JD015842.

    • Search Google Scholar
    • Export Citation
  • Petersen, L., F. Pellicciotti, I. Juszak, M. Carenzo, and B. Brock, 2013: Suitability of a constant air temperature lapse rate over an Alpine glacier: Testing the Greuell and Böhm model as an alternative. Ann. Glaciol., 54, 120130, https://doi.org/10.3189/2013AoG63A477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratap, B., P. Sharma, L. Patel, A. T. Singh, V. K. Gaddam, S. Oulkar, and M. Thamban, 2019: Reconciling high glacier surface melting in summer with air temperature in the semi-arid zone of western Himalaya. Water, 11, 1561, https://doi.org/10.3390/w11081561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragettli, S., W. W. Immerzeel, and F. Pellicciotti, 2016: Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA, 113, 92229227, https://doi.org/10.1073/pnas.1606526113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rees, H. G., and D. N. Collins, 2006: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Processes, 20, 21572169, https://doi.org/10.1002/hyp.6209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwanghart, W., and N. J. Kuhn, 2010: TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Modell. Software, 25, 770781, https://doi.org/10.1016/j.envsoft.2009.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. E., B. W. Brock, A. Ayala, N. Rutter, and F. Pellicciotti, 2017: Centreline and cross-glacier air temperature variability on an Alpine glacier: Assessing temperature distribution methods and their influence on melt model calculations. J. Glaciol., 63, 973988, https://doi.org/10.1017/jog.2017.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. E., W. Yang, Á. Ayala, C. Bravo, C. Zhao, and F. Pellicciotti, 2021: Distributed summer air temperatures across mountain glaciers in the south-east Tibetan Plateau: Temperature sensitivity and comparison with existing glacier datasets. Cryosphere, 15, 595614, https://doi.org/10.5194/tc-15-595-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, J. M., and R. D. Moore, 2010: Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. J. Geophys. Res., 115, D23107, https://doi.org/10.1029/2010JD014351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shean, D. E., S. Bhushan, P. Montesano, D. R. Rounce, A. Arendt, and B. Osmanoglu, 2020: A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci, 7, 363, https://doi.org/10.3389/feart.2019.00363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., and S. Liu, 2000: Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull., 45, 668672, https://doi.org/10.1007/BF02886048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troxler, P., A. Ayala, T. E. Shaw, M. Nolan, B. Brock, and F. Pellicciotti, 2020: Modelling spatial patterns of near-surface air temperature over a decade of melt seasons on McCall Glacier, Alaska. J. Glaciol., 66, 386400, https://doi.org/10.1017/jog.2020.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. R., 1997: Structure and diurnal, variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Bound.-Layer Meteor., 83, 183205, https://doi.org/10.1023/A:1000268825998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, K. P., S. Y. Liu, Z. L. Jiang, J. L. Xu, J. F. Wei, and W. Q. Guo, 2018: Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere, 12, 103121, https://doi.org/10.5194/tc-12-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, B., and Coauthors, 2009: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA, 106, 22 11422 118, https://doi.org/10.1073/pnas.0910444106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., X. F. Guo, T. D. Yao, K. Yang, L. Zhao, S. H. Li, and M. L. Zhu, 2011: Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. J. Geophys. Res., 116, D14116, https://doi.org/10.1029/2010JD015183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., T. D. Yao, X. F. Guo, M. L. Zhu, S. H. Li, and D. B. Kattel, 2013: Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos., 118, 95799594, https://doi.org/10.1002/jgrd.50760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., X. F. Guo, T. D. Yao, M. L. Zhu, and Y. J. Wang, 2016: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dyn., 47, 805815, https://doi.org/10.1007/s00382-015-2872-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., T. D. Yao, M. L. Zhu, and Y. J. Wang, 2017: Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau. J. Glaciol., 63, 10901104, https://doi.org/10.1017/jog.2017.77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., X. F. Guo, and Y. J. Wang, 2018: Observational evidence of the combined influence of atmospheric circulations and local factors on near-surface meteorology in Dagze Co basin, inner Tibetan Plateau. Int. J. Climatol., 38, 20562066, https://doi.org/10.1002/joc.5316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., and Coauthors, 2020: Seasonal dynamics of a temperate Tibetan Glacier revealed by high-resolution UAV photogrammetry and in situ measurements. Remote Sens., 12, 2389, https://doi.org/10.3390/rs12152389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., T. Zhang, D. Qin, S. Kang, and X. Qin, 2011: Characteristics and changes in air temperature and glacier’s response on the north slope of Mt. Qomolangma (Mt. Everest). Arct. Antarct. Alp. Res., 43, 147160, https://doi.org/10.1657/1938-4246-43.1.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H. B., W. Yang, T. D. Yao, L. D. Tian, and B. Q. Xu, 2016: Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: Observations and modeling. Sci. Rep., 6, 30706, https://doi.org/10.1038/srep30706.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 698 0 0
Full Text Views 3858 3228 183
PDF Downloads 660 204 15