• Ansmann, A., and Coauthors, 2011: Saharan mineral dust experiments SAMUM-1 and SAMUM-2: What have we learned? Tellus, 63B, 403429, https://doi.org/10.1111/j.1600-0889.2011.00555.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña-Marrero, J. C., R. E. Arredondo, and B. B. González, 2012: Demonstrating the potential for first-class research in underdeveloped countries: Research on stratospheric aerosols and cirrus clouds optical properties, and radiative effects in Cuba (1988–2010). Bull. Amer. Meteor. Soc., 93, 10171027, https://doi.org/10.1175/BAMS-D-11-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña-Marrero, J. C., A. De Frutos Baraja, and R. Estevan Arredondo, 2016: Joint aerosol research between Cuba and Spain proves fruitful. Eos, 97, 82, https://doi.org/10.1029/2016EO060125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña-Marrero, J. C., V. Cachorro, F. García, A. M. de Frutos, A. Rodríguez, D. Mateos, R. Estevan, and C. Toledano, 2018: Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba. Atmos. Meas. Tech., 11, 22792293, https://doi.org/10.5194/amt-11-2279-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennouna, Y. S., V. E. Cachorro, B. Torres, C. Toledano, A. Berjón, A. de Frutos, and I. Fernández-Coppel, 2013: Atmospheric turbidity determined by the annual cycle of optical depth over north-center Spain with ground (AERONET) and satellite (MODIS). Atmos. Environ., 67, 352364, https://doi.org/10.1016/j.atmosenv.2012.10.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennouna, Y. S., V. E. Cachorro, D. Mateos, M. A. Burgos, C. Toledano, B. Torres, and A. M. de Frutos, 2016: Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment. Atmos. Environ., 140, 261272, https://doi.org/10.1016/j.atmosenv.2016.05.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boiyo, R., K. R. Kumar, and T. Zhao, 2018: Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination. Atmos. Environ., 177, 234252, https://doi.org/10.1016/j.atmosenv.2018.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boselli, A., R. Caggiano, C. Cornacchia, F. Madonna, L. Mona, M. Macchiato, G. Pappalardo, and S. Trippetta, 2012: Multi year sun-photometer measurements for aerosol characterization in a central Mediterranean site. Atmos. Res., 104–105, 98110, https://doi.org/10.1016/j.atmosres.2011.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571657.

    • Search Google Scholar
    • Export Citation
  • Brunekreef, B., 2010: Air pollution and human health: From local to global issues. Procedia, 2, 66616669, https://doi.org/10.1016/j.sbspro.2010.05.010.

    • Search Google Scholar
    • Export Citation
  • Burgos, M. A., D. Mateos, V. E. Cachorro, C. Toledano, and A. M. de Frutos, 2017: Aerosol properties of mineral dust and its mixtures in a regional background of north-central Iberian Peninsula. Sci. Total Environ., 572, 10051019, https://doi.org/10.1016/j.scitotenv.2016.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadelis, G., R. Tourres, and J. Molinie, 2014: Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French Archipelago of the Caribbean). PLOS ONE, 9, e91136, https://doi.org/10.1371/journal.pone.0091136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadee, X. T., and R. M. Clarke, 2015: Daily near-surface large-scale atmospheric circulation patterns over the wider Caribbean. Climate Dyn., 44, 29272946, https://doi.org/10.1007/s00382-015-2621-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Che, H., Y. Wang, J. Sun, X. Zhang, X. Zhang, and J. Guo, 2013: Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual. Res., 13, 777785, https://doi.org/10.4209/aaqr.2012.07.0200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and Coauthors, 2004: Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res., 109, D15S09, https://doi.org/10.1029/2003JD004378.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2010: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Climate, 23, 14771494, https://doi.org/10.1175/2009JCLI3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2002: Interannual variability of the bimodal distribution of summertime rainfall over Central America and tropical storm activity in the far-eastern Pacific. Climate Res., 22, 141146, https://doi.org/10.3354/cr022141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denjean, C., and Coauthors, 2016: Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. Atmos., 121, 71177138, https://doi.org/10.1002/2016JD024783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. de Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, https://doi.org/10.1007/s003820050316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, O. M., N. Riemer, and S. Hameed, 2008: Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. J. Geophys. Res., 113, D07211, https://doi.org/10.1029/2007JD009171.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_4 modelling system. NOAA Tech. Memo. ERL ARL-224, 24 pp.

  • Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosols optical properties from sun and sky radiance measurements. J. Geophys. Res., 105, 20 67320 696, https://doi.org/10.1029/2000JD900282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, 1999: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104, 31 33331 349, https://doi.org/10.1029/1999JD900923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2003: High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophys. Res. Lett., 30, 2035, https://doi.org/10.1029/2003GL017861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2010: Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J. Geophys. Res., 115, D19205, https://doi.org/10.1029/2010JD014002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estevan, R., and Coauthors, 2011a: Preliminary results of aerosols measurements with sun photometer at Camagüey, Cuba. Opt. Pura Appl., 44, 99106.

    • Search Google Scholar
    • Export Citation
  • Estevan, R., and Coauthors, 2011b: Aerosols measurements with a CIMEL CE-318 sun photometer in Camagüey, Cuba. Rev. Boliv. Fís., 20s, 5153.

    • Search Google Scholar
    • Export Citation
  • Estevan, R., L. Mona, N. Papagiannopoulos, J. C. Antuña-Marrero, V. Cachorro, and Á. de Frutos, 2014: CALIPSO and sun photometer measurements of Saharan dust events over Camagüey. Opt. Pura Appl., 47, 189196, https://doi.org/10.7149/OPA.47.3.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández, A., and Y. A. Díaz, 2003: Catálogo de los Procesos Sinópticos en el Archipiélago Cubano en el Período 1979–1993. Imprenta GeoCuba, 168 pp.

    • Search Google Scholar
    • Export Citation
  • Fitzgerald, E., A. P. Ault, M. Zauscher, O. L. Mayol-Bracero, and K. A. Prather, 2015: Comparison of the mixing state of long range transported Asian and African mineral dust. Atmos. Environ., 115, 1925, https://doi.org/10.1016/j.atmosenv.2015.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, F., R. Estevan, J. C. Antuña-Marrero, J. Rosas, I. Y. Platero, J. C. Antuña-Sánchez, and N. Díaz, 2015: Determination of the broadband aerosol optical depth baseline and comparison with sun photometer data (in Spanish). Opt. Pura Appl., 48, 249258, https://doi.org/10.7149/OPA.48.4.249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, https://doi.org/10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, D. M., and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169209, https://doi.org/10.5194/amt-12-169-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gioda, A., and Coauthors, 2011: Speciation of water-soluble inorganic, organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles. J. Geophys. Res., 116, D05203, https://doi.org/10.1029/2010JD015010.

    • Search Google Scholar
    • Export Citation
  • Goudie, A. S., and N. J. Middleton, 2006: Desert Dust in the Global System. Springer, 287 pp.

  • Groß, S., M. Tesche, V. Freudenthaler, C. Toledano, M. Weigner, A. Ansmann, D. Althausen, and M. Seefeldner, 2011: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus, 63B, 706724, https://doi.org/10.1111/j.1600-0889.2011.00556.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., J. Gasteiger, V. Freudenthaler, T. Müller, D. Sauer, C. Toledano, and A. Ansmann, 2016: Saharan dust contribution to the Caribbean summertime boundary layer—A lidar study during SALTRACE. Atmos. Chem. Phys., 16, 11 53511 546, https://doi.org/10.5194/acp-16-11535-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, D. S., L. A. Lee, K. J. Pringle, C. L. Reddington, D. V. Spracklen, and K. S. Carslaw, 2014: Occurrence of pristine aerosol environments on a polluted planet. Proc. Natl. Acad. Sci. USA, 111, 18 46618 471, https://doi.org/10.1073/pnas.1415440111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004: The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth. Quart. J. Roy. Meteor. Soc., 130, 779800, https://doi.org/10.1256/qj.03.100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical Properties Of Aerosols and Clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 2001: An emerging ground‐based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12 06712 097, https://doi.org/10.1029/2001JD900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16, 36173628, https://doi.org/10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2017: Caribbean air chemistry and dispersion conditions. Atmosphere, 8, 151, https://doi.org/10.3390/atmos8080151.

  • Jury, M. R., and M. J. Santiago, 2010: Composite analysis of dust impacts on African easterly waves in the Moderate Resolution Imaging Spectrometer era. J. Geophys. Res., 115, D16213, https://doi.org/10.1029/2009JD013612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kambezidis, H. D., and D. G. Kaskaoutis, 2008: Aerosol climatology over four AERONET sites: An overview. Atmos. Environ., 42, 18921906, https://doi.org/10.1016/j.atmosenv.2007.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kampa, M., and E. Castanas, 2008: Human health effects of air pollution. Environ. Pollut., 151, 362367, https://doi.org/10.1016/j.envpol.2007.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandler, K., K. Schneiders, M. Ebert, M. Hartmann, S. Weinbruch, M. Prass, and C. Pöhlker, 2018: Composition and mixing state of atmospheric aerosols determined by electron microscopy: Method development and application to aged Saharan dust deposition in the Caribbean boundary layer. Atmos. Chem. Phys., 18, 13 42913 455, https://doi.org/10.5194/acp-18-13429-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaskaoutis, D. G., H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath, 2007: Aerosol climatology: On the discrimination of aerosol types over four AERONET sites. Atmos. Chem. Phys. Discuss., 7, 63576411, https://doi.org/10.5194/acpd-7-6357-2007.

    • Search Google Scholar
    • Export Citation
  • Kaskaoutis, D. G., S. Kumar, P. R. Sinha, R. P. Singh, H. D. Kambezidis, A. Sharma Rani, and K. V. S. Badarinath, 2011: Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season. Atmos. Chem. Phys., 11, 70977117, https://doi.org/10.5194/acp-11-7097-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11 20711 212, https://doi.org/10.1073/pnas.0505191102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. R., N. Kang, and Y. Yin, 2017: Classification of key aerosol types and their frequency distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze River Delta, China. Int. J. Climatol., 38, 320336, https://doi.org/10.1002/joc.5178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosols effects: A review. Atmos. Chem. Phys., 5, 715737, https://doi.org/10.5194/acp-5-715-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midrainy season drought over Mexico and Central America. J. Climate, 12, 15771588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. Liu, and N. Buenning, 2005: Indian monsoon onset and Americas midrainy season drought: Out-of-equilibrium responses to smooth seasonal forcing. J. Climate, 18, 11091115, https://doi.org/10.1175/JCLI-3310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maring, H., D. L. Savoie, M. A. Izaguirre, and L. Custals, 2003: Mineral dust aerosol size distribution change during atmospheric transport. J. Geophys. Res., 108, 8592, https://doi.org/10.1029/2002JD002536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, C., L. Goddard, Y. Kushnir, and M. Ting, 2019: Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Climate Dyn., 53, 825846, https://doi.org/10.1007/s00382-019-04616-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P. A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, N. J., and A. S. Goudie, 2001: Saharan dust: Sources and trajectories. Trans. Inst. Br. Geogr., 26, 165181, https://doi.org/10.1111/1475-5661.00013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteil, M. A., 2008: Saharan dust clouds and human health in the English-speaking Caribbean: What we know and don’t know. Environ. Geochem. Health, 30, 339343, https://doi.org/10.1007/s10653-008-9162-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montserrat Volcano Observatory, 2010: MVO Activity Reports. Open File Rep. OFR 13-03 (March 2013). Montserrat Volcano Observatory Rep., 59 pp., http://www.mvo.ms/pub/Activity_Reports/2010/MVO_OFR_13_03-MVO_Activity_Reports_2010.pdf.

    • Search Google Scholar
    • Export Citation
  • Montserrat Volcano Observatory, 2012: MVO Activity Reports. Open File Rep. OFR 13-01 (January 2013), Montserrat Volcano Observatory Rep., 55 pp., http://www.mvo.ms/pub/Activity_Reports/2012/MVO_OFR_13_01-MVO_Activity_Reports_2012.pdf.

    • Search Google Scholar
    • Export Citation
  • Montserrat Volcano Observatory, 2013: MVO Activity Reports. Open File Rep. OFR 14-01 (January 2014). Montserrat Volcano Observatory Rep., 135 pp., http://www.mvo.ms/pub/Open_File_Reports/MVO_OFR_14_01-MVO_Activity_Reports_2013.pdf.

    • Search Google Scholar
    • Export Citation
  • Moron, V., I. Gouirand, and M. Taylor, 2016: Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature. Climate Dyn., 47, 601621, https://doi.org/10.1007/s00382-015-2858-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659740.

    • Search Google Scholar
    • Export Citation
  • New, N., and J. Estupiñán, 2013: Meteorological conditions leading to the Saharan events observed in South Florida in July 2012. Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NWS Miami Forecast Office Rep., 26 pp.

    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., A. Ignatov, B. N. Holben, and T. F. Eck, 2000: The lognormal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sunphotometer data. Geophys. Res. Lett., 27, 33333336, https://doi.org/10.1029/2000GL011581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., T. F. Eck, B. N. Holben, A. Smirnov, A. Royer, and Z. Li, 2002: Optical properties of boreal forest fire smoke derived from sun photometry. J. Geophys. Res., 107, 4125, https://doi.org/10.1029/2001JD000877.

    • Search Google Scholar
    • Export Citation
  • Patel, P. N., U. C. Dumka, D. G. Kaskaoutis, K. N. Babu, and A. K. Mathur, 2017: Optical and radiative properties of aerosols over Desalpar, a remote site in western India: Source identification, modification processes and aerosol type discrimination. Sci. Total Environ., 575, 612627, https://doi.org/10.1016/j.scitotenv.2016.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petit, R. H., M. Legrand, I. Jankowiak, J. Molinié, C. Asselin de Beauville, G. Marion, and J. L. Mansot, 2005: Transport of Saharan dust over the Caribbean Islands: Study of an event. J. Geophys. Res., 110, D18S09, https://doi.org/10.1029/2004JD004748.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. Carlson, 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 52555265, https://doi.org/10.1029/JC077i027p05255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and R. T. Nees, 1986: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320, 735738, https://doi.org/10.1038/320735a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and H. F. Diaz, 2016: The impact of African dust on air quality in the Caribbean Basin. Eos, 97, https://doi.org/10.1029/2016EO043831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Bonatti, C. Schubert, and T. N. Carlson, 1970: Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet. Sci. Lett., 9, 287293, https://doi.org/10.1016/0012-821X(70)90039-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., F.-X. Collard, J. Molinié, and A. Jeannot, 2014: Characterizing the annual cycle of African dust transport to the Caribbean basin and South America and its impact on the environment and air quality. Global Biogeochem. Cycles, 28, 757773, https://doi.org/10.1002/2013GB004802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raga, G. B., D. Baumgardner, and O. L. Mayol-Bracero, 2016: History of aerosol-cloud interactions derived from observations in mountaintop clouds in Puerto Rico. Aerosol Air Qual. Res., 16, 674688, https://doi.org/10.4209/aaqr.2015.05.0359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raptis, I. P., S. Kazadzis, V. Amiridis, A. Gkikas, E. Gerasopoulos, and N. Mihalopoulos, 2020: A decade of aerosol optical properties measurements over Athens, Greece. Atmosphere, 11, 154, https://doi.org/10.3390/atmos11020154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reddington, C. L., and Coauthors, 2017: The Global Aerosol Synthesis and Science Project (GASSP): Measurements and modeling to reduce uncertainty. Bull. Amer. Meteor. Soc., 98, 18571877, https://doi.org/10.1175/BAMS-D-15-00317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rittmeister, F., A. Ansmann, R. Engelmann, A. Skupin, H. Baars, T. Kanitz, and S. Kinne, 2017: From the Caribbean to West Africa: Four weeks of continuous dust and marine aerosol profiling with shipborne polarization/Raman lidar—A contribution to SALTRACE. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-130.

    • Search Google Scholar
    • Export Citation
  • Rivera, H., J. A. Ogren, E. Andrews, and O. L. Mayol-Bracero, 2018: Variations in the physicochemical and optical properties of natural aerosols in Puerto Rico—Implications for climate. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-791.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, https://doi.org/10.1080/027868290913988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sáenz, F., and A. M. Durán-Quesada, 2015: A climatology of low level wind regimes over Central America using a weather type classification approach. Front. Earth Sci., 3, 15, https://doi.org/10.3389/feart.2015.00015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, https://doi.org/10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sears, T. M., G. E. Thomas, E. Carboni, A. J. A. Smith, and R. G. Grainger, 2013: SO as a possible proxy for volcanic ash in aviation hazard avoidance. J. Geophys. Res. Atmos., 118, 56985709, https://doi.org/10.1002/jgrd.50505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellitto, P., L. Spampinato, G. G. Salerno, and A. La Spina, 2018: Aerosol optical properties of Pacaya volcano plume measured with a portable sun photometer. Geosciences, 8, 36, https://doi.org/10.3390/geosciences8020036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59, 501523, https://doi.org/10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud screening and quality control algorithms for the AERONET data base. Remote Sens. Environ., 73, 337349, https://doi.org/10.1016/S0034-4257(00)00109-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snider, J., M. Petters, P. Wechsler, and P. Liu, 2006: Supersaturation in the Wyoming CCN instrument. J. Atmos. Oceanic Technol., 23, 13231339, https://doi.org/10.1175/JTECH1916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiegel, J. K., N. Buchmann, O. L. Mayol-Bracero, L. A. Cuadra-Rodríguez, C. J. Valle-Díaz, K. A. Prather, S. Mertes, and W. Eugster, 2013: Do cloud properties in a Puerto Rican tropical montane cloud forest depend on occurrence of long range transported African dust? Pure Appl. Geophys., 171, 24432459, https://doi.org/10.1007/s00024-014-0830-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., and E. J. Alfaro, 2005: Central America and the Caribbean, Climate of. Encyclopedia of World Climatology, J. E. Oliver, Ed., Encyclopedia of Earth Sciences Series, Springer, https://doi.org/10.1007/1-4020-3266-8_37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tesche, M., S. Groß, A. Ansmann, D. Müller, D. Althausen, V. Freudenthaler, and M. Esselborn, 2011: Profiling of Saharan dust and biomass burning smoke with multiwavelength polarization Raman lidar at Cape Verde. Tellus, 63B, 649676, https://doi.org/10.1111/j.1600-0889.2011.00548.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toledano, C., 2005: Climatología de los aerosoles mediante la caracterización de propiedades ópticas y masas de aire en la estación ‘El Arenosillo’ de la red AERONET. Ph.D. thesis, Universidad de Valladolid, 237 pp.

    • Search Google Scholar
    • Export Citation
  • Toledano, C., V. E. Cachorro, A. Berjon, A. M. de Frutos, M. Sorribas, B. A. de la Morena, and P. Goloub, 2007: Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quart. J. Roy. Meteor. Soc., 133, 795807, https://doi.org/10.1002/qj.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toledano, C., V. E. Cachorro, A. M. de Frutos, B. Torres, A. Berjón, M. Sorribas, and S. Stone, 2009: Airmass classification and analysis of aerosol types at El Arenosillo (Spain). J. Appl. Meteor. Climatol., 48, 962981, https://doi.org/10.1175/2008JAMC2006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valle-Díaz, C. J., E. Torres-Delgado, S. M. Colón-Santos, T. Lee, J. L. Collett Jr., W. H. McDowell, and O. M. Mayol-Bracero, 2016: Impact of long-range transported African dust on cloud water chemistry at a tropical montane cloud forest in northeastern Puerto Rico. Aerosol Air Qual. Res., 16, 653664, https://doi.org/10.4209/aaqr.2015.05.0320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco-Merino, C., and Coauthors, 2018: Impact of long-range transport over the Atlantic Ocean on Saharan dust optical and microphysical properties based on AERONET data. Atmos. Chem. Phys., 18, 94119424, https://doi.org/10.5194/acp-18-9411-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verma, S., D. Prakash, P. Ricaud, S. Payra, J. L. Attié, and M. Soni, 2015: A new classification of aerosol sources and types as measured over Jaipur, India. Aerosol Air Qual. Res., 15, 985993, https://doi.org/10.4209/aaqr.2014.07.0143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, R., and Coauthors, 2011: In situ observations of new particle formation in the tropical upper troposphere: The role of clouds and the nucleation mechanism. Atmos. Chem. Phys., 11, 998310 010, https://doi.org/10.5194/acp-11-9983-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinzierl, B., and Coauthors, 2017: The Saharan aerosol long-range transport and aerosol-cloud-interaction experiment. Bull. Amer. Meteor. Soc., 98, 14271451, https://doi.org/10.1175/BAMS-D-15-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wex, H., and Coauthors, 2016: Aerosol arriving on the Caribbean island of Barbados: Physical properties and origin. Atmos. Chem. Phys., 16, 14 10714 130, https://doi.org/10.5194/acp-16-14107-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xian, P., P. J. Klotzbach, J. P. Dunion, M. A. Janiga, J. S. Reid, P. R. Colarco, and Z. Kipling, 2020: Revisiting the relationship between Atlantic dust and tropical cyclone activity using aerosol optical depth reanalyses: 2003–2018. Atmos. Chem. Phys., 20, 15 35715 378, https://doi.org/10.5194/acp-20-15357-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. J., K. F. Ho, and Z. X. Shen, 2012: The role of aerosol in climate change, the environment, and human health. Atmos. Ocean. Sci. Lett., 5, 156161, https://doi.org/10.1080/16742834.2012.11446983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and Coauthors, 2018: Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets. Atmos. Chem. Phys., 18, 11 24711 260, https://doi.org/10.5194/acp-18-11247-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 440 406 10
Full Text Views 86 86 0
PDF Downloads 94 94 0

Climatology of Aerosols over the Caribbean Islands: Aerosol Types, Synoptic Patterns, and Transport

Albeht Rodríguez VegaaAtmospheric Optics Group, Meteorological Institute of Cuba, Camagüey, Cuba

Search for other papers by Albeht Rodríguez Vega in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6036-4242
,
Juan Carlos Antuña-MarrerobGroup of Atmospheric Optics, Universidad de Valladolid, Valladolid, Spain

Search for other papers by Juan Carlos Antuña-Marrero in
Current site
Google Scholar
PubMed
Close
,
David BarriopedrocInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by David Barriopedro in
Current site
Google Scholar
PubMed
Close
,
Ricardo García-HerreracInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, Madrid, Spain
dDepartamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Ricardo García-Herrera in
Current site
Google Scholar
PubMed
Close
,
Victoria E. Cachorro RevillabGroup of Atmospheric Optics, Universidad de Valladolid, Valladolid, Spain

Search for other papers by Victoria E. Cachorro Revilla in
Current site
Google Scholar
PubMed
Close
,
Ángel de Frutos BarajabGroup of Atmospheric Optics, Universidad de Valladolid, Valladolid, Spain

Search for other papers by Ángel de Frutos Baraja in
Current site
Google Scholar
PubMed
Close
, and
Juan Carlos Antuña-SánchezbGroup of Atmospheric Optics, Universidad de Valladolid, Valladolid, Spain

Search for other papers by Juan Carlos Antuña-Sánchez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a climatological study of aerosols in four representative Caribbean Sea islands that is based on daily mean values of aerosol optical properties for the period 2008–16, using the aerosol optical depth (AOD) and Ångström exponent (AE) to classify the dominant aerosol type. A climatological assessment of the spatiotemporal distribution of the main aerosol types, their links with synoptic patterns, and the transport from different sources is provided. Maximum values of AOD occur in the rainy season, coinciding with the minimum in AE and an increased occurrence of dust, whereas the minimum of AOD occurs in the dry season, due to the predominance of marine aerosols. Marine and dust aerosol are more frequent in the easternmost islands and decrease westward because of an increase of continental and mixture dust aerosols. Therefore, the westernmost station displays the most heterogeneous composition of aerosols. Using a weather-type classification, we identify a quantifiable influence of the atmospheric circulation in the distribution of Caribbean aerosols. However, they can occur under relatively weak and/or diverse synoptic patterns, typically involving transient systems and specific configurations of the Azores high that depend on the considered station. Backward trajectories indicate that dry-season marine aerosols and rainy-season dust are transported by air parcels traveling within the tropical easterly winds. The main source region for both types of aerosols is the subtropical eastern Atlantic Ocean, except for Cuba, where the largest contributor to dry-season marine aerosols is the subtropical western Atlantic. Different aerosol types follow similar pathways, suggesting a key role of emission sources in determining the spatiotemporal distribution of Caribbean aerosols.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albeht Rodríguez Vega, albertrodriguezvega@gmail.com

Abstract

We present a climatological study of aerosols in four representative Caribbean Sea islands that is based on daily mean values of aerosol optical properties for the period 2008–16, using the aerosol optical depth (AOD) and Ångström exponent (AE) to classify the dominant aerosol type. A climatological assessment of the spatiotemporal distribution of the main aerosol types, their links with synoptic patterns, and the transport from different sources is provided. Maximum values of AOD occur in the rainy season, coinciding with the minimum in AE and an increased occurrence of dust, whereas the minimum of AOD occurs in the dry season, due to the predominance of marine aerosols. Marine and dust aerosol are more frequent in the easternmost islands and decrease westward because of an increase of continental and mixture dust aerosols. Therefore, the westernmost station displays the most heterogeneous composition of aerosols. Using a weather-type classification, we identify a quantifiable influence of the atmospheric circulation in the distribution of Caribbean aerosols. However, they can occur under relatively weak and/or diverse synoptic patterns, typically involving transient systems and specific configurations of the Azores high that depend on the considered station. Backward trajectories indicate that dry-season marine aerosols and rainy-season dust are transported by air parcels traveling within the tropical easterly winds. The main source region for both types of aerosols is the subtropical eastern Atlantic Ocean, except for Cuba, where the largest contributor to dry-season marine aerosols is the subtropical western Atlantic. Different aerosol types follow similar pathways, suggesting a key role of emission sources in determining the spatiotemporal distribution of Caribbean aerosols.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albeht Rodríguez Vega, albertrodriguezvega@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 1.89 MB)
Save