Evaluation of ERA5-Land and HARv2 Reanalysis Data at High Elevation in the Upper Dudh Koshi Basin (Everest Region, Nepal)

Arbindra Khadka aUniversité Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France
bInternational Centre for Integrated Mountain Development, Kathmandu, Nepal
cCentral Department of Hydrology and Meteorology, Tribhuvan University, Kirtipur, Nepal

Search for other papers by Arbindra Khadka in
Current site
Google Scholar
PubMed
Close
,
Patrick Wagnon aUniversité Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France
bInternational Centre for Integrated Mountain Development, Kathmandu, Nepal

Search for other papers by Patrick Wagnon in
Current site
Google Scholar
PubMed
Close
,
Fanny Brun aUniversité Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France

Search for other papers by Fanny Brun in
Current site
Google Scholar
PubMed
Close
,
Dibas Shrestha cCentral Department of Hydrology and Meteorology, Tribhuvan University, Kirtipur, Nepal

Search for other papers by Dibas Shrestha in
Current site
Google Scholar
PubMed
Close
,
Yves Lejeune dUniversité Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, Centre d’Etudes de la Neige, Grenoble, France

Search for other papers by Yves Lejeune in
Current site
Google Scholar
PubMed
Close
, and
Yves Arnaud aUniversité Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France

Search for other papers by Yves Arnaud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a multisite evaluation of meteorological variables in the Everest region (Nepal) from ERA5-Land and High Asian Refined Analysis, version 2 (HARv2), reanalyses in comparison with in situ observations, using classical statistical metrics. Observation data have been collected since 2010 by seven meteorological stations located on or off glacier between 4260 and 6352 m MSL in the upper Dudh Koshi basin; 2-m air temperature, specific and relative humidities, wind speed, incoming shortwave and longwave radiations, and precipitation are considered successively. Overall, both gridded datasets are able to resolve the mesoscale atmospheric processes, with a slightly better performance for HARv2 than that for ERA5-Land, especially for wind speed. Because of the complex topography, they fail to reproduce local- to microscale processes captured at individual meteorological stations, especially for variables that have a large spatial variability such as precipitation or wind speed. Air temperature is the variable that is best captured by reanalyses, as long as an appropriate elevational gradient of air temperature above ground, spatiotemporally variable and preferentially assessed by local observations, is used to extrapolate it vertically. A cold bias is still observed but attenuated over clean-ice glaciers. The atmospheric water content is well represented by both gridded datasets even though we observe a small humid bias, slightly more important for ERA5-Land than for HARv2, and a spectacular overestimation of precipitation during the monsoon. The agreement between reanalyzed and observed shortwave and longwave incoming radiations depends on the elevation difference between the station site and the reanalysis grid cell. The seasonality of wind speed is only captured by HARv2. The two gridded datasets ERA5-Land and HARv2 are applicable for glacier mass and energy balance studies, as long as either statistical or dynamical downscaling techniques are used to resolve the scale mismatch between coarse mesoscale grids and fine-scale grids or individual sites.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arbindra Khadka, arbindra.khadka@icimod.org

Abstract

We present a multisite evaluation of meteorological variables in the Everest region (Nepal) from ERA5-Land and High Asian Refined Analysis, version 2 (HARv2), reanalyses in comparison with in situ observations, using classical statistical metrics. Observation data have been collected since 2010 by seven meteorological stations located on or off glacier between 4260 and 6352 m MSL in the upper Dudh Koshi basin; 2-m air temperature, specific and relative humidities, wind speed, incoming shortwave and longwave radiations, and precipitation are considered successively. Overall, both gridded datasets are able to resolve the mesoscale atmospheric processes, with a slightly better performance for HARv2 than that for ERA5-Land, especially for wind speed. Because of the complex topography, they fail to reproduce local- to microscale processes captured at individual meteorological stations, especially for variables that have a large spatial variability such as precipitation or wind speed. Air temperature is the variable that is best captured by reanalyses, as long as an appropriate elevational gradient of air temperature above ground, spatiotemporally variable and preferentially assessed by local observations, is used to extrapolate it vertically. A cold bias is still observed but attenuated over clean-ice glaciers. The atmospheric water content is well represented by both gridded datasets even though we observe a small humid bias, slightly more important for ERA5-Land than for HARv2, and a spectacular overestimation of precipitation during the monsoon. The agreement between reanalyzed and observed shortwave and longwave incoming radiations depends on the elevation difference between the station site and the reanalysis grid cell. The seasonality of wind speed is only captured by HARv2. The two gridded datasets ERA5-Land and HARv2 are applicable for glacier mass and energy balance studies, as long as either statistical or dynamical downscaling techniques are used to resolve the scale mismatch between coarse mesoscale grids and fine-scale grids or individual sites.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arbindra Khadka, arbindra.khadka@icimod.org

Supplementary Materials

    • Supplemental Materials (PDF 4.30 MB)
Save
  • Alduchov, O. A., and R. E. Eskridge, 1996: Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteor., 35, 601609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baudouin, J. P., M. Herzog, and C. A. Petrie, 2020: Cross-validating precipitation datasets in the Indus river basin. Hydrol. Earth Syst. Sci., 24, 427450, https://doi.org/10.5194/hess-24-427-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthier, E., and F. Brun, 2019: Karakoram geodetic glacier mass balances between 2008 and 2016: Persistence of the anomaly and influence of a large rock avalanche on Siachen Glacier. J. Glaciol., 65, 494507, https://doi.org/10.1017/jog.2019.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolch, T., and Coauthors, 2019: Status and change of the cryosphere in the extended Hindu Kush Himalaya region. The Hindu Kush Himalaya Assessment, Springer, 209255, https://doi.org/10.1007/978-3-319-92288-1_7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M., L. Bertolalani, and G. Tartari, 2002: Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994–1999. Bull. Glaciol. Res., 19, 112.

    • Search Google Scholar
    • Export Citation
  • Bonasoni, P., and Coauthors, 2010: Atmospheric brown clouds in the Himalayas: First two years of continuous observations at the Nepal climate observatory-pyramid (5079 M). Atmos. Chem. Phys., 10, 75157531, https://doi.org/10.5194/acp-10-7515-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, F., E. Berthier, P. Wagnon, A. Kääb, and D. Treichler, 2017: A spatially resolved estimate of high mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10, 668673, https://doi.org/10.1038/ngeo2999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, B., S. Gruber, D. Zheng, and X. Li, 2020: The ERA5-land soil-temperature bias in permafrost regions. Cryosphere, 14, 25812595, https://doi.org/10.5194/tc-14-2581-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eeckman, J., P. Chevallier, A. Boone, L. Neppel, A. De Rouw, F. Delclaux, and D. Koirala, 2017: Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrol. Earth Syst. Sci., 21, 48794893, https://doi.org/10.5194/hess-21-4879-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Førland, E. J., and Coauthors, 1996: Manual for operational correction of Nordic precipitation data. Nordic Working Group on Precipitation DNMI-Klima Rep. 24/96, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Fujita, K., and Coauthors, 2017: Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal. Nat. Hazards Earth Syst. Sci., 17, 749764, https://doi.org/10.5194/nhess-17-749-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, A., A. Boone, P. Wagnon, and R. Hawley, 2020: Incorporating moisture content in surface energy balance modeling of a debris-covered glacier. Cryosphere, 14, 15551577, https://doi.org/10.5194/tc-14-1555-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamm, A., and Coauthors, 2020: Intercomparison of gridded precipitation datasets over a sub-region of the central Himalaya and the southwestern Tibetan Plateau. Water, 12, 3271, https://doi.org/10.3390/w12113271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Immerzeel, W. W., L. P. Van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. Petersen, S. Ragettli, and F. Pellicciotti, 2014: The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50, 22122226, https://doi.org/10.1002/2013WR014506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and Coauthors, 2020: Importance and vulnerability of the world’s water towers. Nature, 577, 364369, https://doi.org/10.1038/s41586-019-1822-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattel, D. B., T. Yao, K. Yang, L. Tian, G. Yang, and D. Joswiak, 2013: Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol., 113, 671682, https://doi.org/10.1007/s00704-012-0816-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayastha, R. B., T. Ohata, and Y. Ageta, 1999: Application of a mass-balance model to a Himalayan glacier. J. Glaciol., 45, 559567, https://doi.org/10.1017/S002214300000143X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., and Coauthors, 2017: Analysis of single-alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE. Hydrol. Earth Syst. Sci., 21, 35253542, https://doi.org/10.5194/hess-21-3525-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraaijenbrink, P. D. A., F. P. Bierkens, A. F. Lutz, and W. W. Immerzeel, 2017: Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549, 257260, https://doi.org/10.1038/nature23878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Y., P. Wagnon, L. Bouilloud, P. Chevallier, P. Etchevers, E. Martin, J. E. Sicart, and F. Habets, 2007: Melting of snow cover in a tropical mountain environment: Processes and modeling. J. Hydrometeor., 8, 922937, https://doi.org/10.1175/JHM590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Litt, M., J. M. Shea, P. Wagnon, J. Steiner, I. Koch, and E. Stigter, 2019: Glacier ablation and temperature indexed melt models in the Nepalese Himalaya. Sci. Rep., 9, 5264, https://doi.org/10.1038/s41598-019-41657-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., W. W. Immerzeel, A. B. Shrestha, and M. F. P. Bierkens, 2014: Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Climate Change, 4, 587592, https://doi.org/10.1038/nclimate2237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, R. Finkelnburg, J. Richters, W. Yang, T. Yao, D. Scherer, and W. Yang, 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci., 15, 17951817, https://doi.org/10.5194/hess-15-1795-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, E., J. F. Steiner, and F. Brun, 2017: Highly variable aerodynamic roughness length (Z0) for a hummocky debris-covered glacier. J. Geophys. Res. Atmos., 122, 84478466, https://doi.org/10.1002/2017JD026510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mimeau, L., M. Esteves, I. Zin, H.-W. Jacobi, F. Brun, P. Wagnon, D. Koirala, and Y. Arnaud, 2019: Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): Some cryospheric-related issues. Hydrol. Earth Syst. Sci., 23, 39693996, https://doi.org/10.5194/hess-23-3969-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, W. Yang, and D. Scherer, 2012: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere, 6, 14451461, https://doi.org/10.5194/tc-6-1445-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2014: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Climate Change, 4, 6873, https://doi.org/10.1038/nclimate2055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 2002: Boundary Layer Climates. Routledge, 464 pp.

  • Orsolini, Y., and Coauthors, 2019: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. Cryosphere, 13, 22212239, https://doi.org/10.5194/tc-13-2221-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, L. B., and Coauthors, 2020: Precipitation characteristics and moisture source regions on Mt. Everest in the Khumbu, Nepal. One Earth, 3, 594607, https://doi.org/10.1016/j.oneear.2020.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, W. T., and Coauthors, 2014: The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol., 60, 537552, https://doi.org/10.3189/2014JoG13J176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., 2019: Asia’s shrinking glaciers protect large populations from drought stress. Nature, 569, 649654, https://doi.org/10.1038/s41586-019-1240-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pugh, L., 1954: Notes on temperature and snow conditions in the Everest region in spring 1952 and 1953. J. Glaciol., 2, 363365, https://doi.org/10.1017/S0022143000025284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragettli, S., and Coauthors, 2015: Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour., 78, 94111, https://doi.org/10.1016/j.advwatres.2015.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, A., and K. Fujita, 2017: Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep., 7, 13717, https://doi.org/10.1038/s41598-017-14256-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salerno, F., and Coauthors, 2015: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere, 9, 12291247, https://doi.org/10.5194/tc-9-1229-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanz Rodrigo, J. S., J. M. Buchlin, J. van Beeck, J. T. Lenaerts, and M. R. van den Broeke, 2013: Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Climate Dyn., 40, 353376, https://doi.org/10.1007/s00382-012-1396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, J. M., P. Wagnon, W. W. Immerzeel, R. Biron, F. Brun, and F. Pellicciotti, 2015: A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya. Int. J. Water Resour. Dev., 31, 174200, https://doi.org/10.1080/07900627.2015.1020417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shean, D. E., S. Bhushan, P. Montesano, D. R. Rounce, A. Arendt, and B. Osmanoglu, 2020: A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherpa, S. F., and Coauthors, 2017: Contrasted surface mass balances of debris-free glaciers observed between the southern and the inner parts of the Everest region (2007–15). J. Glaciol., 63, 637651, https://doi.org/10.1017/jog.2017.30.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, J. F., and F. Pellicciotti, 2016: On the variability of air temperature over a debris-covered glacier, Nepalese Himalaya. Ann. Glaciol., 57, 295307, https://doi.org/10.3189/2016AoG71A066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, J. F., M. Litt, E. E. Stigter, J. Shea, M. F. P. Bierkens, and W. W. Immerzeel, 2018: The importance of turbulent fluxes in the surface energy balance of a debris-covered glacier in the Himalayas. Front. Earth Sci., 6, 125, https://doi.org/10.3389/FEART.2018.00144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stigter, E. E., M. Litt, J. F. Steiner, P. N. J. Bonekamp, J. M. Shea, M. F. P. Bierkens, and W. W. Immerzeel, 2018: The importance of snow sublimation on a Himalayan glacier. Front. Earth Sci., 6, 108, https://doi.org/10.3389/feart.2018.00108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumm, D., S. P. Joshi, T. K. Gurung, and G. Silwal, 2021: Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017. Earth Syst. Sci. Data, 13, 37913818, https://doi.org/10.5194/essd-13-3791-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunako, S., K. Fujita, A. Sakai, and R. B. Kayastha, 2019: Mass balance of Trambau Glacier, Rolwaling Region, Nepal Himalaya: In-situ observations, long-term reconstruction and mass-balance sensitivity. J. Glaciol., 65, 605616, https://doi.org/10.1017/jog.2019.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth Land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, K., K. Toyotsu, L. Bertolani, and G. Tartari, 2008: Stepwise onset of monsoon weather observed in the Nepal Himalaya. Mon. Wea. Rev., 136, 25072522, https://doi.org/10.1175/2007MWR2298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations, 2015: Adoption of the Paris Agreement. Framework Convention on Climate Change Doc. FCCC/CP/2015/L.9/Rev1, 32 pp., https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf.

    • Search Google Scholar
    • Export Citation
  • Wagnon, P., and Coauthors, 2020: Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, central Himalaya, using geodetic mass balance. J. Glaciol., 67, 117125, https://doi.org/10.1017/jog.2020.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., R. M. Graham, K. Wang, S. Gerland, and M. A. Granskog, 2019: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic Sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere, 13, 16611679, https://doi.org/10.5194/tc-13-1661-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., V. Tolksdorf, M. Otto, and D. Scherer, 2020: WRF-based dynamical downscaling of ERA5 reanalysis data for high mountain Asia: Towards a new version of the high Asia refined analysis. Int. J. Climatol., 41, 743762, https://doi.org/10.1002/joc.6686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., K. Ueno, and K. Nakamura, 2011: Comparison of satellite precipitation products with rain gauge data for the Khumb Region, Nepal Himalayas. J. Meteor. Soc. Japan, 89, 597610, https://doi.org/10.2151/jmsj.2011-601.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1085 0 0
Full Text Views 2024 1093 88
PDF Downloads 1389 636 66