• Abidin, H. Z., H. Andreas, R. Djaja, D. Darmawan, and M. Gamal, 2008: Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solut., 12, 2332, https://doi.org/10.1007/s10291-007-0061-0.

    • Search Google Scholar
    • Export Citation
  • Abidin, H. Z., H. Andreas, I. Gumilar, Y. Fukuda, Y. E. Pohan, and T. Deguchi, 2011: Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards, 59, 17531771, https://doi.org/10.1007/s11069-011-9866-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badan Penanggulangan Bencana Daerah, 2013: Laporan Banjir Tahun 2013 (2013 flood report). Accessed 20 August 2022, https://data.jakarta.go.id/dataset/rekap-banjir-bulan-februari-2016.

    • Crossref
    • Export Citation
  • BAPPENAS, 2008: Laporan Perkiraan Kerusakan dan Kerugian Pasca Bencana Banjir Awal Februari 2007 di Wilayah JABODETABEK (Jakarta, Bogor, Depok, Tangerang, dan Bekasi) (Report on estimated damage and losses after the early February 2007 flood disaster in the greater Jakarta area). Indonesia Ministry of National Development Planning Rep., 63 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barge, B., R. Humphries, S. Mah, and W. Kuhnke, 1979: Rainfall measurements by weather radar: Applications to hydrology. Water Resour. Res., 15, 13801386, https://doi.org/10.1029/WR015i006p01380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borowska, L., and D. Zrnic, 2012: Use of ground clutter to monitor polarimetric radar calibration. J. Atmos. Oceanic Technol., 29, 159176, https://doi.org/10.1175/JTECH-D-11-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, and J. W. Wilson, 1999: A comparison of radar reflectivity estimates of rainfall from collocated radars. J. Atmos. Oceanic Technol., 16, 12641272, https://doi.org/10.1175/1520-0426(1999)016<1264:ACORRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., D. Tanré, and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834838, https://doi.org/10.1126/science.1066434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915, https://doi.org/10.1109/36.951081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brinkman, J. J., and M. Hartman, 2008: Jakarta flood hazard mapping framework. World Bank Rep., 9 pp., https://edepot.wur.nl/140833.

    • Crossref
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Accessed 19 December 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

    • Crossref
    • Export Citation
  • Dave, P., M. Bhushan, and C. Venkataraman, 2017: Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci. Rep., 7, 17347, https://doi.org/10.1038/s41598-017-17599-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firman, T., I. M. Surbakti, I. C. Idroes, and H. A. Simarmata, 2011: Potential climate-change related vulnerabilities in Jakarta: Challenges and current status. Habitat Int., 35, 372378, https://doi.org/10.1016/j.habitatint.2010.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43, 10381056, https://doi.org/10.1175/1520-0450(2004)043<1038:QPSDTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadi, T. W., T. Horinouchi, T. Tsuda, H. Hashiguchi, and S. Fukao, 2002: Sea-breeze circulation over Jakarta, Indonesia: A climatology based on boundary layer radar observations. Mon. Wea. Rev., 130, 21532166, https://doi.org/10.1175/1520-0493(2002)130<2153:SBCOJI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamada, J.-I., M. D. Yamanaka, S. Mori, Y. I. Tauhid, and T. Sribimawati, 2008: Differences of rainfall characteristics between coastal and interior areas of central western Sumatera, Indonesia. J. Meteor. Soc. Japan, 86, 593611, https://doi.org/10.2151/jmsj.86.593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, J.-I., S. Mori, H. Kubota, M. D. Yamanaka, U. Haryoko, S. Lestari, R. Sulistyowati, and F. Syamsudin, 2012: Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean dipole and El Niño-Southern Oscillation events. SOLA, 8, 6972, https://doi.org/10.2151/sola.2012-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D., S. Driscoll, and M. Kitchen, 2006: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor. Appl., 7, 135144, https://doi.org/10.1017/S1350482700001468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasan, M. M., 2016: Radar rainfall estimation: Consideration of input and structural uncertainty. Ph.D. thesis, University of New South Wales, 115 pp., https://doi.org/10.26190/unsworks/19346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazenberg, P., H. Leijnse, and R. Uijlenhoet, 2014: The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system. J. Hydrol., 519, 34103425, https://doi.org/10.1016/j.jhydrol.2014.09.057.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidayat, R., and S. Kizu, 2010: Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol., 30, 18161825, https://doi.org/10.1002/joc.2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., 1978: Iterative correction for attenuation of 5 cm radar in rain. J. Appl. Meteor., 17, 508514, https://doi.org/10.1175/1520-0450(1978)017<0508:ICFAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holderness, T., and E. Turpin, 2015: Assessing the role of social media for civic co-management during monsoon flooding in Jakarta, Indonesia. University of Wollongong SMART Infrastructure Facility White Paper, accessed 16 June 2020, https://petajakarta.org/banjir/en/research/index.html.

    • Crossref
    • Export Citation
  • Jacobi, S., and M. Heistermann, 2016: Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in south-west Germany. Geomatics Nat. Hazards Risk, 7, 17851799, https://doi.org/10.1080/19475705.2016.1155080.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., and W. R. Cotton, 2006: Effect of air pollution on precipitation along the Front Range of the Rocky Mountains. J. Appl. Meteor. Climatol., 45, 236245, https://doi.org/10.1175/JAM2328.1.

    • Search Google Scholar
    • Export Citation
  • Kamimera, H., S. Mori, M. D. Yamanaka, and F. Syamsudin, 2012: Modulation of diurnal rainfall cycle by the Madden-Julian oscillation based on one-year continuous observations with a meteorological radar in west Sumatera. SOLA, 8, 111114, https://doi.org/10.2151/sola.2012-028.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., S. Mori, J.-I. Hamada, M. Hattori, F. Syamsudin, and M. D. Yamanaka, 2018: Diurnal cycle over a coastal area of the Maritime Continent as derived by special networked soundings over Jakarta during HARIMAU2010. Prog. Earth Planet. Sci., 5, 64, https://doi.org/10.1186/s40645-018-0216-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouwen, N., and E. D. Soulis, 1994: Weather radar and flood forecasting. J. Water Manage. Model., 2, 257269, https://doi.org/10.14796/JWMM.R176-16.

  • Krämer, S., 2008: Quantitative radar data processing for rainfall forecasting and urban drainage. PhD dissertation, Gottfried Wilhelm Leibniz University, 92 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, S., and H. Verworn, 2008: Improved C-band radar data processing for real time control of urban drainage systems. Proc. 11th Int. Conf. on Urban Drainage, Edinburgh, United Kingdom, International Association on Hydraulic Engineering and Research/International Water Association, 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013: On the effects of large-scale environment and surface types on convective cloud characteristics over Darwin, Australia. Mon. Wea. Rev., 141, 13581374, https://doi.org/10.1175/MWR-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurniadi, A., E. Weller, S.-K. Min, and M.-G. Seong, 2021: Independent ENSO and IOD impacts on rainfall extremes over Indonesia. Int. J. Climatol., 41, 36403656, https://doi.org/10.1002/joc.7040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., 2000: Real‐time calibration of radar precipitation estimates. Prof. Geogr., 52, 235246, https://doi.org/10.1111/0033-0124.00221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Opt. Express, 22, 16551660, https://doi.org/10.1364/OE.22.001655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lestari, S., A. King, C. Vincent, D. Karoly, and A. Protat, 2019: Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia. Wea. Climate Extremes, 24, 100202, https://doi.org/10.1016/j.wace.2019.100202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., C. D. Doan, S.-Y. Liong, R. Sanders, A. T. Dao, and T. Fewtrell, 2015: Regional frequency analysis of extreme rainfall events in Jakarta. Nat. Hazards, 75, 10751104, https://doi.org/10.1007/s11069-014-1363-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louf, V., A. Protat, R. A. Warren, S. M. Collis, D. B. Wolff, S. Raunyiar, C. Jakob, and W. A. Petersen, 2019: An integrated approach to weather radar calibration and monitoring using ground clutter and satellite comparisons. J. Atmos. Oceanic Technol., 36, 1739, https://doi.org/10.1175/JTECH-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandapaka, P., U. Germann, and L. Panziera, 2013: Diurnal cycle of precipitation over complex Alpine orography: Inferences from high‐resolution radar observations. Quart. J. Roy. Meteor. Soc., 139, 10251046, https://doi.org/10.1002/qj.2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapiam, P. P., A. Sharma, and N. Sriwongsitanon, 2014: Defining the Z–R relationship using gauge rainfall with coarse temporal resolution: Implications for flood forecasting. J. Hydrol. Eng., 19, 04014003, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzuki, M., H. Hashiguchi, M. Yamamoto, S. Mori, and M. Yamanaka, 2013: Regional variability of raindrop size distribution over Indonesia. Ann. Geophys., 31, 19411948, https://doi.org/10.5194/angeo-31-1941-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzuki, M., H. Hashiguchi, T. Kozu, T. Shimomai, Y. Shibagaki, and Y. Takahashi, 2016: Precipitation microstructure in different Madden–Julian Oscillation phases over Sumatra. Atmos. Res., 168, 121138, https://doi.org/10.1016/j.atmosres.2015.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., and Coauthors, 2017: An overview of the Asian Monsoon Years 2007–2012 (AMY) and multi-scale interactions in the extreme rainfall events over the Indonesian maritime continent. The Global Monsoon System: Research and Forecast, B. Wang et al., Eds., World Scientific, 365385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., C. N. Long, and A. Protat, 2012: The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin, Australia). J. Climate, 25, 53095326, https://doi.org/10.1175/JCLI-D-11-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. J., V. A. Bell, and D. A. Jones, 2005: Forecasting for flood warning. C. R. Geosci., 337, 203217, https://doi.org/10.1016/j.crte.2004.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2018: Meridional march of diurnal rainfall over Jakarta, Indonesia, observed with a C-band Doppler radar: An overview of the HARIMAU2010 campaign. Prog. Earth Planet. Sci., 5, 47, https://doi.org/10.1186/s40645-018-0202-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., Y. Enzel, U. Shamir, and R. Garti, 2001: The characteristic time scale for basin hydrological response using radar data. J. Hydrol., 252, 8599, https://doi.org/10.1016/S0022-1694(01)00451-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Protat, V. Kumar, S. Rauniyar, M. Whimpey, and L. Rikus, 2015: A regional forecast model evaluation of statistical rainfall properties using the CPOL radar observations in different precipitation regimes over Darwin, Australia. Quart. J. Roy. Meteor. Soc., 141, 23372349, https://doi.org/10.1002/qj.2525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nievergelt, Y., 1994: Total least squares: State-of-the-art regression in numerical analysis. SIAM Rev., 36, 258264, https://doi.org/10.1137/1036055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and K. Musiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 14451463, https://doi.org/10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orellana-Alvear, J., R. Célleri, R. Rollenbeck, and J. Bendix, 2017: Analysis of rain types and their Z–R relationships at different locations in the high Andes of southern Ecuador. J. Appl. Meteor. Climatol., 56, 30653080, https://doi.org/10.1175/JAMC-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., T. Buishand, I. Holleman, and R. Uijlenhoet, 2010: Extreme value modeling of areal rainfall from weather radar. Water Resour. Res., 46, W09514, https://doi.org/10.1029/2009WR008517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., M. Maki, K. Iwanami, V. Bringi, and V. Chandrasekar, 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, https://doi.org/10.1175/JTECH1804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paski, J. A. I., and D. S. Permana, 2018: Using the C-band Doppler weather radar data to reconstruct extreme rainfall event on 11th March 2018 in Bangka Island, Indonesia. MATEC Web Conf., 229, 04013, https://doi.org/10.1051/matecconf/201822904013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peleg, N., F. Marra, S. Fatichi, A. Paschalis, P. Molnar, and P. Burlando, 2018: Spatial variability of extreme rainfall at radar subpixel scale. J. Hydrol., 556, 922933, https://doi.org/10.1016/j.jhydrol.2016.05.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., C. Klepp, V. Louf, W. A. Petersen, S. P. Alexander, A. Barros, J. Leinonen, and G. G. Mace, 2019: The latitudinal variability of oceanic rainfall properties and its implication for satellite retrievals. Part 2: The relationships between radar observables and drop size distribution parameters. J. Geophys. Res. Atmos., 124, 13 31213 324, https://doi.org/10.1029/2019JD031011.

    • Search Google Scholar
    • Export Citation
  • Raghavan, S., 2003: Radar meteorology—History, principles and technology. Radar Meteorology, Atmospheric and Oceanographic Sciences Library, Vol. 27, Springer, 149, https://doi.org/10.1007/978-94-017-0201-0_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribaud, J. F., O. Bousquet, S. Coquillat, H. Al‐Sakka, D. Lambert, V. Ducrocq, and E. Fontaine, 2016: Evaluation and application of hydrometeor classification algorithm outputs inferred from multi‐frequency dual‐polarimetric radar observations collected during HyMeX. Quart. J. Roy. Meteor. Soc., 142, 95107, https://doi.org/10.1002/qj.2589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796, https://doi.org/10.1126/science.287.5459.1793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satterthwaite, D., 2008: Climate change and urbanization: Effects and implications for urban governance. United Nations Population Division–Department of Economic and Social Affairs, 29 pp., https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/unpd_egm_200801_climate_change_and_urbanization_effects_and_implications_for_urban_governance_satterthwaite.pdf.

    • Crossref
    • Export Citation
  • Sebastianelli, S., F. Russo, F. Napolitano, and L. Baldini, 2013: On precipitation measurements collected by a weather radar and a rain gauge network. Nat. Hazards Earth Syst. Sci., 13, 605623, https://doi.org/10.5194/nhess-13-605-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., B. Dolan, W. F. Krajewski, S. A. Rutledge, and W. Petersen, 2015: Comparison of single-and dual-polarization–based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies project. J. Hydrometeor., 16, 16581675, https://doi.org/10.1175/JHM-D-14-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silberstein, D. S., D. B. Wolff, D. A. Marks, D. Atlas, and J. L. Pippitt, 2008: Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Oceanic Technol., 25, 20372045, https://doi.org/10.1175/2008JTECHA1063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siswanto, S., G. J. van Oldenborgh, G. van der Schrier, R. Jilderda, and B. van den Hurk, 2016: Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years. Int. J. Climatol., 36, 32073225, https://doi.org/10.1002/joc.4548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siswanto, S., G. van der Schrier, G. J. van Oldenborgh, B. van den Hurk, E. Aldrian, Y. Swarinoto, W. Sulistya, and A. E. Sakya, 2017: A very unusual precipitation event associated with the 2015 floods in Jakarta: An analysis of the meteorological factors. Wea. Climate Extremes, 16, 2328, https://doi.org/10.1016/j.wace.2017.03.003.

    • Search Google Scholar
    • Export Citation
  • Sivasubramaniam, K., A. Sharma, and K. Alfredsen, 2019: Merging radar and gauge information within a dynamical model combination framework for precipitation estimation in cold climates. Environ. Model. Software, 119, 99110, https://doi.org/10.1016/j.envsoft.2019.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, K. L. Meierdiercks, A. J. Miller, and W. F. Krajewski, 2007: Radar rainfall estimation for flash flood forecasting in small urban watersheds. Adv. Water Resour., 30, 20872097, https://doi.org/10.1016/j.advwatres.2006.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, G. Villarini, C. Welty, A. J. Miller, and W. F. Krajewski, 2012: Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan region. Water Resour. Res., 48, W04504, https://doi.org/10.1029/2011WR010641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Supari, S., S. Sudibyakto, J. Ettema, and E. Aldrian, 2012: Spatiotemporal characteristics of extreme rainfall events over Java Island, Indonesia. Indones. J. Geogr., 44, 6286, https://doi.org/10.22146/indo.j.geog,2391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, M. Thurai, and V. Chandrasekar, 2018: Dual-polarization radar rainfall estimation over tropical oceans. J. Appl. Meteor. Climatol., 57, 755775, https://doi.org/10.1175/JAMC-D-17-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuy, L. T., S. Kawagoe, and R. Sarukkalige, 2019: Estimation of probable maximum precipitation at three provinces in northeast Vietnam using historical data and future climate change scenarios. J. Hydrol. Reg. Stud., 23, 100599, https://doi.org/10.1016/j.ejrh.2019.100599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trilaksono, N. J., S. Otsuka, S. Yoden, K. Saito, and S. Hayashi, 2011: Dependence of model-simulated heavy rainfall on the horizontal resolution during the Jakarta Flood event in January-February 2007. SOLA, 7, 193196, https://doi.org/10.2151/sola.2011-049.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and L. G. Lee, 1999: Rainfall measurement error by WSR-88D radars due to variations in Z–R law parameters and the radar constant. J. Atmos. Oceanic Technol., 16, 10171024, https://doi.org/10.1175/1520-0426(1999)016<1017:RMEBWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaccarono, M., R. Bechini, C. V. Chandrasekar, R. Cremonini, and C. Cassardo, 2016: An integrated approach to monitoring the calibration stability of operational dual-polarization radars. Atmos. Meas. Tech., 9, 53675383, https://doi.org/10.5194/amt-9-5367-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuerich, E., C. Monesi, L. Lanza, L. Stagi, and E. Lanzinger, 2009: WMO field intercomparison of rainfall intensity gauges. WMO Instruments and Observing Methods Rep. 99, 290 pp., https://library.wmo.int/doc_num.php?explnum_id=9422.

    • Crossref
    • Export Citation
  • Wijayanti, P., X. Zhu, P. Hellegers, Y. Budiyono, and E. C. van Ierland, 2017: Estimation of river flood damages in Jakarta, Indonesia. Nat. Hazards, 86, 10591079, https://doi.org/10.1007/s11069-016-2730-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO Tech. Doc. 1500, 55 pp., https://library.wmo.int/doc_num.php?explnum_id=9419.

    • Crossref
    • Export Citation
  • WMO, 2017: WMO guidelines on the calculation of climate normals. WMO Tech. Doc. 1203, 29 pp., https://library.wmo.int/doc_num.php?explnum_id=4166.

    • Crossref
    • Export Citation
  • Wolff, D. B., D. A. Marks, and W. A. Petersen, 2015: General application of the relative calibration adjustment (RCA) technique for monitoring and correcting radar reflectivity calibration. J. Atmos. Oceanic Technol., 32, 496506, https://doi.org/10.1175/JTECH-D-13-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, H. Fudeyasu, M. D. Yamanaka, J. Matsumoto, F. Syamsudin, R. Sulistyowati, and Y. S. Djajadihardja, 2007: The impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java Island. SOLA, 3, 9396, https://doi.org/10.2151/sola.2007-024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., A. A. Arbain, S. Mori, J.-i. Hamada, M. Hattori, F. Syamsudin, and M. D. Yamanaka, 2013: The effects of an active phase of the Madden–Julian oscillation on the extreme precipitation event over western Java Island in January 2013. SOLA, 9, 7983, https://doi.org/10.2151/sola.2013-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., 2016: Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmos. Res., 178–179, 231259, https://doi.org/10.1016/j.atmosres.2016.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., S.-Y. Ogino, P.-M. Wu, H. Jun-Ichi, S. Mori, J. Matsumoto, and F. Syamsudin, 2018: Maritime continent coastlines controlling Earth’s climate. Prog. Earth Planet. Sci., 5, 21, https://doi.org/10.1186/s40645-018-0174-9.

    • Search Google Scholar
    • Export Citation
  • Yanase, A., K. Yasunaga, and H. Masunaga, 2017: Relationship between the direction of diurnal rainfall migration and the ambient wind over the southern Sumatra Island. Earth Space Sci., 4, 117127, https://doi.org/10.1002/2016EA000181.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., S. Mori, M. Katsumata, B. Geng, K. Yasunaga, and F. Syamsudin, 2017: Diurnal cycle of precipitation observed in the western coastal area of Sumatra Island: Offshore preconditioning by gravity waves. Mon. Wea. Rev., 145, 37453761, https://doi.org/10.1175/MWR-D-16-0468.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., S. Mori, F. Syamsudin, U. Haryoko, and B. Geng, 2019: Environmental conditions for nighttime offshore migration of precipitation area as revealed by in situ observation off Sumatra Island. Mon. Wea. Rev., 147, 33913407, https://doi.org/10.1175/MWR-D-18-0412.1.

    • Search Google Scholar
    • Export Citation
  • Yusuf, A. A., and H. Francisco, 2009: Climate change vulnerability mapping for Southeast Asia. Economy and Environment Program for Southeast Asia Rep., 32 pp., http://hdl.handle.net/10625/46380.

  • Zhang, T. T., Y. Song, J. Xingwen, and H. Bohua, 2016: Roles of remote and local forcings in the variation and prediction of regional Maritime Continent rainfall in wet and dry seasons. J. Climate, 29, 88718879, https://doi.org/10.1175/JCLI-D-16-0417.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 537 537 9
Full Text Views 105 105 4
PDF Downloads 93 93 1

Subdaily Rain-Rate Properties in Western Java Analyzed Using C-Band Doppler Radar

Sopia LestariaSchool of Geography, Earth, and Atmospheric Sciences, University of Melbourne, Victoria, Australia
bARC Centre of Excellence for Climate Extremes, Melbourne, Victoria, Australia

Search for other papers by Sopia Lestari in
Current site
Google Scholar
PubMed
Close
,
Alain ProtatcBureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
,
Valentin LoufcBureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Valentin Louf in
Current site
Google Scholar
PubMed
Close
,
Andrew KingaSchool of Geography, Earth, and Atmospheric Sciences, University of Melbourne, Victoria, Australia
bARC Centre of Excellence for Climate Extremes, Melbourne, Victoria, Australia

Search for other papers by Andrew King in
Current site
Google Scholar
PubMed
Close
,
Claire VincentaSchool of Geography, Earth, and Atmospheric Sciences, University of Melbourne, Victoria, Australia
bARC Centre of Excellence for Climate Extremes, Melbourne, Victoria, Australia

Search for other papers by Claire Vincent in
Current site
Google Scholar
PubMed
Close
, and
Shuichi MoridJapan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Shuichi Mori in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Jakarta, a megacity in Indonesia, experiences recurrent floods associated with heavy rainfall. Characteristics of subdaily rainfall and the local factors influencing rainfall around Jakarta have not been thoroughly investigated, primarily because of data limitations. In this study, we examine the frequency and intensity of hourly and daily rain rate, including spatial characteristics and variations across time scales. We use 6-min C-band Doppler radar and 1-min in situ data during 2009–12 to resolve spatial rain-rate characteristics at higher resolution than previous studies. A reflectivity–rain rate (Z–R) relationship is derived (Z = 102.7R 1.75) and applied to estimate hourly rain rate. Our results show that rain rate around Jakarta is spatially inhomogeneous. In the rainy season [December–February (DJF)], rain rate exhibits statistical properties markedly different from other seasons, with much higher frequency of rain, but, on average, less intense rain rate. In all seasons, there is a persistent higher hourly and daily mean rain rate found over mountainous areas, indicating the importance of local orographic effects. In contrast, for hourly rain-rate extremes, peaks are observed mostly over the coastal land and lowland areas. For the diurnal cycle of mean rain rate, a distinct afternoon peak is found developing earlier in DJF and later in the dry season. This study has implications for other analyses of mesoscale rain-rate extremes in areas of complex topography and suggests that coarse-grain products may miss major features of the rain-rate variability identified in our study.

Significance Statement

For many years, Jakarta and its surrounding regions have been repeatedly inundated by flooding triggered by short-duration heavy rainfall or rainfall accumulated over multiple days. Little is known about the distribution of local rainfall and how it differs between seasons. In this study, we used high-resolution C-band Doppler radar during 2009–12 to understand the characteristics of rainfall over this complex topography. The results demonstrate that the rainfall features vary spatially and seasonally. In the wet season, rainfall is more frequent but, on average, lighter relative to other seasons. In all seasons, the highest hourly and daily mean rain rate persistently occurs over the mountains, indicating the vital role of topography in generating rainfall in the region.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: Sopia Lestari, slestari@student.unimelb.edu.au

Abstract

Jakarta, a megacity in Indonesia, experiences recurrent floods associated with heavy rainfall. Characteristics of subdaily rainfall and the local factors influencing rainfall around Jakarta have not been thoroughly investigated, primarily because of data limitations. In this study, we examine the frequency and intensity of hourly and daily rain rate, including spatial characteristics and variations across time scales. We use 6-min C-band Doppler radar and 1-min in situ data during 2009–12 to resolve spatial rain-rate characteristics at higher resolution than previous studies. A reflectivity–rain rate (Z–R) relationship is derived (Z = 102.7R 1.75) and applied to estimate hourly rain rate. Our results show that rain rate around Jakarta is spatially inhomogeneous. In the rainy season [December–February (DJF)], rain rate exhibits statistical properties markedly different from other seasons, with much higher frequency of rain, but, on average, less intense rain rate. In all seasons, there is a persistent higher hourly and daily mean rain rate found over mountainous areas, indicating the importance of local orographic effects. In contrast, for hourly rain-rate extremes, peaks are observed mostly over the coastal land and lowland areas. For the diurnal cycle of mean rain rate, a distinct afternoon peak is found developing earlier in DJF and later in the dry season. This study has implications for other analyses of mesoscale rain-rate extremes in areas of complex topography and suggests that coarse-grain products may miss major features of the rain-rate variability identified in our study.

Significance Statement

For many years, Jakarta and its surrounding regions have been repeatedly inundated by flooding triggered by short-duration heavy rainfall or rainfall accumulated over multiple days. Little is known about the distribution of local rainfall and how it differs between seasons. In this study, we used high-resolution C-band Doppler radar during 2009–12 to understand the characteristics of rainfall over this complex topography. The results demonstrate that the rainfall features vary spatially and seasonally. In the wet season, rainfall is more frequent but, on average, lighter relative to other seasons. In all seasons, the highest hourly and daily mean rain rate persistently occurs over the mountains, indicating the vital role of topography in generating rainfall in the region.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: Sopia Lestari, slestari@student.unimelb.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 363 KB)
Save