• 3TIER, 2010: Development of regional wind resource and wind plant output datasets. National Renewable Energy Laboratory Tech. Rep. NREL/SR-550-47676, 29 pp., https://www.nrel.gov/docs/fy10osti/47676.pdf.

  • Aird, J. A., R. J. Barthelmie, T. J. Shepherd, and S. C. Pryor, 2021: WRF-simulated low-level jets over Iowa: Characterization and sensitivity studies. Wind Energy Sci., 6, 10151030, https://doi.org/10.5194/wes-6-1015-2021.

    • Search Google Scholar
    • Export Citation
  • American Clean Power, 2022: Clean power quarterly 2021 Q4. American Clean Power, 135 pp., https://cleanpower.org/resources/clean-power-quarterly-report-q4-2021/.

  • Artigao, E., S. Martín-Martínez, A. Honrubia-Escribano, and E. Gómez-Lázaro, 2018: Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Appl. Energy, 228, 15691583, https://doi.org/10.1016/j.apenergy.2018.07.037.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and S. C. Pryor, 2021: Climate change mitigation potential of wind energy. Climate, 9, 136, https://doi.org/10.3390/cli9090136.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., H. Wang, P. Doubrawa, G. Giroux, and S. C. Pryor, 2016: Effects of an escarpment on flow parameters of relevance to wind turbines. Wind Energy, 19, 22712286, https://doi.org/10.1002/we.1980.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., T. J. Shepherd, J. A. Aird, and S. C. Pryor, 2020: Power and wind shear implications of large wind turbine scenarios in the U.S. central plains. Energies, 13, 4269, https://doi.org/10.3390/en13164269.

    • Search Google Scholar
    • Export Citation
  • Beiter, P., and Coauthors, 2021: Wind power costs driven by innovation and experience with further reductions on the horizon. Wiley Interdiscip. Rev.: Energy Environ., 10, e398, https://doi.org/10.1002/wene.398.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bistline, J. E., and D. T. Young, 2019: Economic drivers of wind and solar penetration in the US. Environ. Res. Lett., 14, 124001, https://doi.org/10.1088/1748-9326/ab4e2d.

    • Search Google Scholar
    • Export Citation
  • Brower, M., 2009: Development of eastern regional wind resource and wind plant output datasets. National Renewable Energy Laboratory Tech. Rep. NREL/SR-550-46764, 66 pp., https://www.nrel.gov/docs/fy10osti/46764.pdf.

  • Brower, M. C., 2012: Wind Resource Assessment: A Practical Guide to Developing a Wind Project. John Wiley and Sons, 280 pp.

  • Bukovsky, M. S., and L. O. Mearns, 2020: Regional climate change projections from NA-CORDEX and their relation to climate sensitivity. Climatic Change, 162, 645665, https://doi.org/10.1007/s10584-020-02835-x.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, https://doi.org/10.1007/s10584-009-9583-5.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, X. Costoya, M. DeCastro, and M. Gómez-Gesteira, 2021: Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renewable Sustainable Energy Rev., 151, 111594, https://doi.org/10.1016/j.rser.2021.111594.

    • Search Google Scholar
    • Export Citation
  • Chen, L., 2020: Impacts of climate change on wind resources over North America based on NA-CORDEX. Renewable Energy, 153, 14281438, https://doi.org/10.1016/j.renene.2020.02.090.

    • Search Google Scholar
    • Export Citation
  • Clifton, A., A. Smith, and M. Fields, 2016: Wind plant preconstruction energy estimates: Current practice and opportunities. National Renewable Energy Laboratory Tech. Rep. NREL/TP-5000-64735, 72 pp., https://www.nrel.gov/docs/fy16osti/64735.pdf.

  • Coburn, J., 2021: Climatological teleconnections with wind energy in a midcontinental region. J. Appl. Meteor. Climatol., 60, 305322, https://doi.org/10.1175/JAMC-D-20-0203.1.

    • Search Google Scholar
    • Export Citation
  • Coburn, J., and S. C. Pryor, 2021: Differential credibility of climate modes in CMIP6. J. Climate, 34, 81458164, https://doi.org/10.1175/JCLI-D-21-0359.1.

    • Search Google Scholar
    • Export Citation
  • Coburn, J. J., and S. C. Pryor, 2023: Projecting future energy production from operating wind farms in North America. Part II: Statistical downscaling. J. Appl. Meteor. Climatol., 62, 81101, https://doi.org/10.1175/JAMC-D-22-0047.1.

    • Search Google Scholar
    • Export Citation
  • Dai, P., and J. Nie, 2022: Robust expansion of extreme midlatitude storms under global warming. Geophys. Res. Lett., 49, e2022GL099007, https://doi.org/10.1029/2022GL099007.

    • Search Google Scholar
    • Export Citation
  • Di Biagio, V., S. Calmanti, A. Dell’Aquila, and P. M. Ruti, 2014: Northern Hemisphere winter midlatitude atmospheric variability in CMIP5 models. Geophys. Res. Lett., 41, 12771282, https://doi.org/10.1002/2013GL058928.

    • Search Google Scholar
    • Export Citation
  • Dong, M., and Coauthors, 2021: Uncertainty and global sensitivity analysis of levelized cost of energy in wind power generation. Energy Convers. Manage., 229, 113781, https://doi.org/10.1016/j.enconman.2020.113781.

    • Search Google Scholar
    • Export Citation
  • Dörenkämper, M., and Coauthors, 2020: The making of the New European Wind Atlas—Part 2: Production and evaluation. Geosci. Model Dev., 13, 50795102, https://doi.org/10.5194/gmd-13-5079-2020.

    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. Purkayastha, and Z. Parker, 2014a: Wind resource assessment of Gujarat (India). National Renewable Energy Laboratory Tech. Rep. NREL/TP-5000-61741, 58 pp., https://www.nrel.gov/docs/fy14osti/61741.pdf.

  • Draxl, C., A. N. Hahmann, A. Peña, and G. Giebel, 2014b: Evaluating winds and vertical wind shear from Weather Research and Forecasting Model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, https://doi.org/10.1002/we.1555.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283, https://ams.confex.com/ams/SLS_WAF_NWP/webprogram/Paper47241.html.

  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, https://doi.org/10.1016/j.rse.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Gaertner, E., and Coauthors, 2020: IEA wind TCP task 37: Definition of the IEA 15-megawatt offshore reference wind turbine. National Renewable Energy Laboratory Tech. Rep. NREL/TP-5000-75698, 54 pp., https://www.osti.gov/biblio/1603478.

  • Gillett, N. P., and J. C. Fyfe, 2013: Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett., 40, 11891193, https://doi.org/10.1002/grl.50249.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Global Wind Energy Council, 2021: Global wind report 2021. GWEC Rep., 78 pp., https://gwec.net/global-wind-report-2021/.

  • Gómez-Navarro, J. J., C. C. Raible, and S. Dierer, 2015: Sensitivity of the WRF model to PBL parametrisations and nesting techniques: Evaluation of wind storms over complex terrain. Geosci. Model Dev., 8, 33493363, https://doi.org/10.5194/gmd-8-3349-2015.

    • Search Google Scholar
    • Export Citation
  • Greene, J. S., M. Chatelain, M. Morrissey, and S. Stadler, 2012: Projected future wind speed and wind power density trends over the western US High Plains. Atmos. Climate Sci., 2, 3240, https://doi.org/10.4236/acs.2012.21005.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., and Coauthors, 2020: The making of the New European Wind Atlas—Part 1: Model sensitivity. Geosci. Model Dev., 13, 50535078, https://doi.org/10.5194/gmd-13-5053-2020.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., and Coauthors, 2021: Mesoscale and microscale downscaling for the wind atlas of South Africa (WASA) project: Phase 3. DTU Wind Energy Rep. E-0218, 101 pp., https://orbit.dtu.dk/en/publications/.

  • Harvey, B., P. Cook, L. C. Shaffrey, and R. Schiemann, 2020: The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., J. Copeland, W. Y. Cheng, Y. Zhang, C. Ammann, and P. Sullivan, 2016: A method to assess the wind and solar resource and to quantify interannual variability over the United States under current and projected future climate. J. Appl. Meteor. Climatol., 55, 345363, https://doi.org/10.1175/JAMC-D-15-0011.1.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2019: On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Amer. Meteor. Soc., 100, 25332550, https://doi.org/10.1175/BAMS-D-18-0033.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate projections. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., D. Frame, L. Harrington, M. Joshi, A. King, M. Rojas, and R. Sutton, 2020: Observed emergence of the climate change signal: From the familiar to the unknown. Geophys. Res. Lett., 47, e2019GL086259, https://doi.org/10.1029/2019GL086259.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Horvath, K., D. Koracin, R. Vellore, J. Jiang, and R. Belu, 2012: Sub‐kilometer dynamical downscaling of near‐surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res., 117, D11111, https://doi.org/10.1029/2012JD017432.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2013: On the ability of the WRF Model to reproduce the surface wind direction over complex terrain. J. Appl. Meteor. Climatol., 52, 16101617, https://doi.org/10.1175/JAMC-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Jin-Qing, Z., L. Wei-Jing, and R. Hong-Li, 2013: Representation of the Arctic oscillation in the CMIP5 models. Adv. Climate Change Res., 4, 242249, https://doi.org/10.3724/SP.J.1248.2013.242.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. L., and R. J. Erhardt, 2016: Projected impacts of climate change on wind energy density in the United States. Renewable Energy, 85, 6673, https://doi.org/10.1016/j.renene.2015.06.005.

    • Search Google Scholar
    • Export Citation
  • Jung, C., D. Taubert, and D. Schindler, 2019: The temporal variability of global wind energy—Long-term trends and inter-annual variability. Energy Convers. Manage., 188, 462472, https://doi.org/10.1016/j.enconman.2019.03.072.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kjellström, E., and Coauthors, 2018: European climate change at global mean temperature increases of 1.5° and 2°C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst. Dyn., 9, 459478, https://doi.org/10.5194/esd-9-459-2018.

    • Search Google Scholar
    • Export Citation
  • Klink, K., 2007: Atmospheric circulation effects on wind speed variability at turbine height. J. Appl. Meteor. Climatol., 46, 445456, https://doi.org/10.1175/JAM2466.1.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, S., and H.-P. Huang, 2014: Changes in surface wind speed over North America from CMIP5 model projections and implications for wind energy. Adv. Meteor., 2014, 292768, https://doi.org/10.1155/2014/292768.

    • Search Google Scholar
    • Export Citation
  • Kusiak, A., 2016: Renewables: Share data on wind energy. Nature, 529, 1922, https://doi.org/10.1038/529019a.

  • Lee, J. C., and M. J. Fields, 2021: An overview of wind-energy-production prediction bias, losses, and uncertainties. Wind Energy Sci., 6, 311365, https://doi.org/10.5194/wes-6-311-2021.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002.

    • Search Google Scholar
    • Export Citation
  • Lledó, L., O. Bellprat, F. J. Doblas-Reyes, and A. Soret, 2018: Investigating the effects of Pacific sea surface temperatures on the wind drought of 2015 over the United States. J. Geophys. Res. Atmos., 123, 48374849, https://doi.org/10.1029/2017JD028019.

    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., P. A. Jiménez, J. Dudhia, and J. P. Montávez, 2016: Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF Model. Mon. Wea. Rev., 144, 26852693, https://doi.org/10.1175/MWR-D-15-0449.1.

    • Search Google Scholar
    • Export Citation
  • Losada Carreño, I., and Coauthors, 2020: Potential impacts of climate change on wind and solar electricity generation in Texas. Climatic Change, 163, 745766, https://doi.org/10.1007/s10584-020-02891-3.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts?: The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, L., R. Carriveau, S. Harper, and S. Singh, 2017: Evaluating the link between LCOE and PPA elements and structure for wind energy. Energy Strategy Rev., 16, 3342, https://doi.org/10.1016/j.esr.2017.02.006.

    • Search Google Scholar
    • Export Citation
  • Millstein, D., M. Bolinger, and R. Wiser, 2022: What can surface wind observations tell us about interannual variation in wind energy output? Wind Energy, 25, 11421150, https://doi.org/10.1002/we.2717.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, W. Gutowski, and R. Turner, 1999: Long simulation of regional climate as a sequence of short segments. Mon. Wea. Rev., 127, 308321, https://doi.org/10.1175/1520-0493(1999)127<0308:LSORCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pennock, K., 2012: Updated eastern interconnect wind power output and forecasts for ERGIS. National Renewable Energy Laboratory Tech. Rep. NREL/SR-5500-56616, 17 pp., https://www.nrel.gov/docs/fy13osti/56616.pdf.

  • Pryor, S. C., and J. Ledolter, 2010: Addendum to “Wind speed trends over the contiguous United States.” J. Geophys. Res., 115, D10103, https://doi.org/10.1029/2009JD013281.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and J. T. Schoof, 2010: Importance of the SRES in projections of climate change impacts on near-surface wind regimes. Meteor. Z., 19, 267274, https://doi.org/10.1127/0941-2948/2010/0454.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2011: Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA, 108, 81678171, https://doi.org/10.1073/pnas.1019388108.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2014: Hybrid downscaling of wind climates over the eastern USA. Environ. Res. Lett., 9, 024013, https://doi.org/10.1088/1748-9326/9/2/024013.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and A. N. Hahmann, 2019: Downscaling wind. Oxford Research Encyclopedia of Climate Science, H. von Storch, Ed., Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.730.

  • Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2005: Empirical downscaling of wind speed probability distributions. J. Geophys. Res., 110, D19109, https://doi.org/10.1029/2005JD005899.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, https://doi.org/10.1029/2008JD011416.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., G. Nikulin, and C. Jones, 2012a: Influence of spatial resolution on regional climate model derived wind climates. J. Geophys. Res., 117, D03117, https://doi.org/10.1029/2011JD016822.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, N. E. Clausen, M. Drews, N. MacKellar, and E. Kjellström, 2012b: Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Climate Dyn., 38, 189208, https://doi.org/10.1007/s00382-010-0955-3.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, and R. J. Barthelmie, 2018: Interannual variability of wind climates and wind turbine annual energy production. Wind Energy Sci., 3, 651665, https://doi.org/10.5194/wes-3-651-2018.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., F. W. Letson, and R. J. Barthelmie, 2020a: Variability in wind energy generation across the contiguous USA. J. Appl. Meteor. Climatol., 59, 20212039, https://doi.org/10.1175/JAMC-D-20-0162.1.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and T. J. Shepherd, 2020b: 20% of US electricity from wind will have limited impacts on system efficiency and regional climate. Sci. Rep., 10, 541, https://doi.org/10.1038/s41598-019-57371-1.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, M. Bukovsky, and R. J. Barthelmie, 2020c: Assessing the stability of wind resource and operating conditions. J. Phys. Conf. Ser., 1452, 012084, https://doi.org/10.1088/1742-6596/1452/1/012084.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, M. S. Bukovsky, L. R. Leung, and K. Sakaguchi, 2020d: Climate change impacts on wind power generation. Nat. Rev. Earth Environ., 1, 627643, https://doi.org/10.1038/s43017-020-0101-7.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and T. J. Shepherd, 2021: Wind power production from very large offshore wind farms. Joule, 5, 26632686, https://doi.org/10.1016/j.joule.2021.09.002.

    • Search Google Scholar
    • Export Citation
  • Pullinger, D., M. Zhang, N. Hill, and T. Crutchley, 2017: Improving uncertainty estimates: Inter-annual variability in Ireland. J. Phys. Conf. Ser., 926, 012006, https://doi.org/10.1088/1742-6596/926/1/012006.

    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., A. Seth, and S. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev., 131, 28572874, https://doi.org/10.1175/1520-0493(2003)131<2857:RVCSFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raftery, P., A. Tindal, and A. Garrad, 1998: Understanding the risks of financing wind farms. Proc. 1997 European Wind Energy Conf., Dublin, Ireland, Wind Energy Association, 77–81, https://www.wind-energy-the-facts.org/references-l-z.html.

  • Rai, R. K., L. K. Berg, B. Kosović, S. E. Haupt, J. D. Mirocha, B. L. Ennis, and C. Draxl, 2019: Evaluation of the impact of horizontal grid spacing in terra incognita on coupled mesoscale–microscale simulations using the WRF framework. Mon. Wea. Rev., 147, 10071027, https://doi.org/10.1175/MWR-D-18-0282.1.

    • Search Google Scholar
    • Export Citation
  • Reyers, M., J. G. Pinto, and J. Moemken, 2015: Statistical-dynamical downscaling for wind energy potentials: Evaluation and applications to decadal hindcasts and climate change projections. Int. J. Climatol., 35, 229244, https://doi.org/10.1002/joc.3975.

    • Search Google Scholar
    • Export Citation
  • Rinaldi, K. Z., J. A. Dowling, T. H. Ruggles, K. Caldeira, and N. S. Lewis, 2021: Wind and solar resource droughts in California highlight the benefits of long-term storage and integration with the western interconnect. Environ. Sci. Technol., 55, 62146226, https://doi.org/10.1021/acs.est.0c07848.

    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., and S. C. Pryor, 2014: Assessing the fidelity of AOGCM‐simulated relationships between large‐scale modes of climate variability and wind speeds. J. Geophys. Res. Atmos., 119, 97199734, https://doi.org/10.1002/2014JD021601.

    • Search Google Scholar
    • Export Citation
  • Seiler, C., and F. Zwiers, 2016: How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? Climate Dyn., 46, 12411256, https://doi.org/10.1007/s00382-015-2642-x.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., M. Rantanen, P. Haapanala, J. Räisänen, and H. Järvinen, 2020: The characteristics and structure of extra-tropical cyclones in a warmer climate. Wea. Climate Dyn., 1 (1), 125, https://doi.org/10.5194/wcd-1-1-2020.

    • Search Google Scholar
    • Export Citation
  • Solbakken, K., Y. Birkelund, and E. M. Samuelsen, 2021: Evaluation of surface wind using WRF in complex terrain: Atmospheric input data and grid spacing. Environ. Modell. Software, 145, 105182, https://doi.org/10.1016/j.envsoft.2021.105182.

    • Search Google Scholar
    • Export Citation
  • Staffell, I., and R. Green, 2014: How does wind farm performance decline with age? Renewable Energy, 66, 775786, https://doi.org/10.1016/j.renene.2013.10.041.

    • Search Google Scholar
    • Export Citation
  • Staid, A., C. VerHulst, and S. D. Guikema, 2018: A comparison of methods for assessing power output in non‐uniform onshore wind farms. Wind Energy, 21, 4252, https://doi.org/10.1002/we.2143.

    • Search Google Scholar
    • Export Citation
  • Stendel, M., J. Francis, R. White, P. D. Williams, and T. Woollings, 2021: The jet stream and climate change. Climate Change, Elsevier, 327–357.

  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Wang, J., H.-M. Kim, and E. K. Chang, 2017: Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Climate, 30, 37053724, https://doi.org/10.1175/JCLI-D-16-0650.1.

    • Search Google Scholar
    • Export Citation
  • Wang, M., P. Ullrich, and D. Millstein, 2018: The future of wind energy in California: Future projections with the variable-resolution CESM. Renewable Energy, 127, 242257, https://doi.org/10.1016/j.renene.2018.04.031.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Vol. 100, Academic Press, 704 pp.

  • Wiser, R. H., and Coauthors, 2021: Land-based wind market report: 2021 edition. Lawrence Berkeley National Laboratory Tech. Rep. AC02-05CH11231, 88 pp., https://www.osti.gov/biblio/1818277.

  • Yang, B., and Coauthors, 2017: Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the Weather Research and Forecasting Model. Bound.-Layer Meteor., 162, 117142, https://doi.org/10.1007/s10546-016-0185-2.

    • Search Google Scholar
    • Export Citation
  • Yang, B., and Coauthors, 2019: Parametric and structural sensitivities of turbine‐height wind speeds in the boundary layer parameterizations in the Weather Research and Forecasting Model. J. Geophys. Res. Atmos., 124, 59515969, https://doi.org/10.1029/2018JD029691.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, X. Bian, and W. E. Heilman, 2015: Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis. J. Climate, 28, 11661183, https://doi.org/10.1175/JCLI-D-14-00322.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Climate Change, 9, 979985, https://doi.org/10.1038/s41558-019-0622-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Yang, X. Ren, Q. Wu, D. Zhou, and E. Elahi, 2020: How to accommodate curtailed wind power: A comparative analysis between the US, Germany, India and China. Energy Strategy Rev., 32, 100538, https://doi.org/10.1016/j.esr.2020.100538.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 646 646 52
Full Text Views 103 103 2
PDF Downloads 132 132 6

Projecting Future Energy Production from Operating Wind Farms in North America. Part I: Dynamical Downscaling

S. C. PryoraDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by S. C. Pryor in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4847-3440
,
J. J. CoburnaDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by J. J. Coburn in
Current site
Google Scholar
PubMed
Close
,
R. J. BarthelmiebSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York

Search for other papers by R. J. Barthelmie in
Current site
Google Scholar
PubMed
Close
, and
T. J. ShepherdaDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by T. J. Shepherd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

New simulations at 12-km grid spacing with the Weather and Research Forecasting (WRF) Model nested in the MPI Earth System Model (ESM) are used to quantify possible changes in wind power generation potential as a result of global warming. Annual capacity factors (CF; measures of electrical power production) computed by applying a power curve to hourly wind speeds at wind turbine hub height from this simulation are also used to illustrate the pitfalls in seeking to infer changes in wind power generation directly from low-spatial-resolution and time-averaged ESM output. WRF-derived CF are evaluated using observed daily CF from operating wind farms. The spatial correlation coefficient between modeled and observed mean CF is 0.65, and the root-mean-square error is 5.4 percentage points. Output from the MPI-WRF Model chain also captures some of the seasonal variability and the probability distribution of daily CF at operating wind farms. Projections of mean annual CF (CFA) indicate no change to 2050 in the southern Great Plains and Northeast. Interannual variability of CFA increases in the Midwest, and CFA declines by up to 2 percentage points in the northern Great Plains. The probability of wind droughts (extended periods with anomalously low production) and wind bonus periods (high production) remains unchanged over most of the eastern United States. The probability of wind bonus periods exhibits some evidence of higher values over the Midwest in the 2040s, whereas the converse is true over the northern Great Plains.

Significance Statement

Wind energy is playing an increasingly important role in low-carbon-emission electricity generation. It is a “weather dependent” renewable energy source, and thus changes in the global atmosphere may cause changes in regional wind power production (PP) potential. We use PP data from operating wind farms to demonstrate that regional simulations exhibit skill in capturing actual power production. Projections to the middle of this century indicate that over most of North America east of the Rocky Mountains annual expected PP is largely unchanged, as is the probability of extended periods of anomalously high or low production. Any small declines in annual PP are of much smaller magnitude than changes due to technological innovation over the last two decades.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu

Abstract

New simulations at 12-km grid spacing with the Weather and Research Forecasting (WRF) Model nested in the MPI Earth System Model (ESM) are used to quantify possible changes in wind power generation potential as a result of global warming. Annual capacity factors (CF; measures of electrical power production) computed by applying a power curve to hourly wind speeds at wind turbine hub height from this simulation are also used to illustrate the pitfalls in seeking to infer changes in wind power generation directly from low-spatial-resolution and time-averaged ESM output. WRF-derived CF are evaluated using observed daily CF from operating wind farms. The spatial correlation coefficient between modeled and observed mean CF is 0.65, and the root-mean-square error is 5.4 percentage points. Output from the MPI-WRF Model chain also captures some of the seasonal variability and the probability distribution of daily CF at operating wind farms. Projections of mean annual CF (CFA) indicate no change to 2050 in the southern Great Plains and Northeast. Interannual variability of CFA increases in the Midwest, and CFA declines by up to 2 percentage points in the northern Great Plains. The probability of wind droughts (extended periods with anomalously low production) and wind bonus periods (high production) remains unchanged over most of the eastern United States. The probability of wind bonus periods exhibits some evidence of higher values over the Midwest in the 2040s, whereas the converse is true over the northern Great Plains.

Significance Statement

Wind energy is playing an increasingly important role in low-carbon-emission electricity generation. It is a “weather dependent” renewable energy source, and thus changes in the global atmosphere may cause changes in regional wind power production (PP) potential. We use PP data from operating wind farms to demonstrate that regional simulations exhibit skill in capturing actual power production. Projections to the middle of this century indicate that over most of North America east of the Rocky Mountains annual expected PP is largely unchanged, as is the probability of extended periods of anomalously high or low production. Any small declines in annual PP are of much smaller magnitude than changes due to technological innovation over the last two decades.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu
Save