• Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-HAILCAST during the 2014–16 NOAA/hazardous weather testbed spring forecasting experiments. Wea. Forecasting, 34, 6179, https://doi.org/10.1175/WAF-D-18-0024.1.

    • Search Google Scholar
    • Export Citation
  • Agresti, A., 2018: An Introduction to Categorical Data Analysis. 3rd ed. John Wiley and Sons, 400 pp.

  • American Clean Power, 2021: Clean Power Quarterly 2020 Q4. ACP Rep., 27 pp., https://cleanpower.org/resources/american-clean-power-market-report-q4-2020/.

  • American Meteorological Society, 2015: “Graupel.” Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Graupel.

  • Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr., and T. W. Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, https://doi.org/10.1175/BAMS-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58, 18891904, https://doi.org/10.1175/JAMC-D-19-0042.1.

    • Search Google Scholar
    • Export Citation
  • Bartholomew, M. J., 2020: Laser disdrometer instrument handbook. U.S. Department of Energy Office of Scientific and Technical Information Tech. Rep. DOE/SC-ARM-TR-137, 22 pp., https://doi.org/10.2172/1226796.

  • Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Search Google Scholar
    • Export Citation
  • Brook, J. P., A. Protat, J. Soderholm, J. T. Carlin, H. McGowan, and R. A. Warren, 2021: HailTrack—Improving radar-based hailfall estimates by modeling hail trajectories. J. Appl. Meteor. Climatol., 60, 237254, https://doi.org/10.1175/JAMC-D-20-0087.1.

    • Search Google Scholar
    • Export Citation
  • Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using property insurance claims data. Wea. Climate Soc., 7, 197210, https://doi.org/10.1175/WCAS-D-15-0011.1.

    • Search Google Scholar
    • Export Citation
  • Candela Garolera, A., S. F. Madsen, M. Nissim, J. D. Myers, and J. Holboell, 2016: Lightning damage to wind turbine blades from wind farms in the US. IEEE Trans. Power Delivery, 31, 10431049, https://doi.org/10.1109/TPWRD.2014.2370682.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. E. Saffle, and J. W. Wilson, 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262, https://doi.org/10.1175/1520-0434(1998)013<0253:AUOTNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., I. N. Williams, and S. Qiu, 2021: Simulating the effects of surface energy partitioning on convective organization: Case study and observations in the US Southern Great Plains. J. Geophys. Res. Atmos., 126, e2020JD033821, https://doi.org/10.1029/2020JD033821.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., 2021: Environmental evolution of long-lived supercell thunderstorms in the Great Plains. Wea. Forecasting, 36, 21872209, https://doi.org/10.1175/WAF-D-21-0042.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Moura, C. A., and C. S. Kubrusly, Eds., 2013: The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years after Its Discovery. Springer, 237 pp., https://doi.org/10.1007/978-0-8176-8394-8.

  • Dessens, J., 1986: Hail in southwestern France. I: Hailfall characteristics and hailstorm environment. J. Appl. Meteor. Climatol., 25, 3547, https://doi.org/10.1175/1520-0450(1986)025<0035:HISFIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Du, Y., S. Zhou, X. Jing, Y. Peng, H. Wu, and N. Kwok, 2020: Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process., 141, 106445, https://doi.org/10.1016/j.ymssp.2019.106445.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forecasting, 13, 277285, https://doi.org/10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud‐resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection‐permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2021: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Froese, M., 2018: Wind-farm owners can now detect leading-edge erosion from data alone. Windpower Engineering and Development, accessed 14 August 2018, https://www.windpowerengineering.com/wind-farm-owners-can-now-detect-leading-edge-erosion-from-data-alone/.

  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaertner, E., and Coauthors, 2020: IEA Wind TCP Task 37: Definition of the IEA 15-megawatt offshore reference wind turbine. NREL Tech. Rep. NREL/TP-5000-75698, 54 pp., https://www.osti.gov/biblio/1603478.

  • Gagne, D. J., II, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Goines, D. C., and A. D. Kennedy, 2018: Precipitation from a multiyear database of convection‐allowing WRF simulations. J. Geophys. Res. Atmos., 123, 24242453, https://doi.org/10.1002/2016JD026068.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., S. J. Böing, O. Henneberg, and S. B. Nissen, 2019: Circling in on convective organization. Geophys. Res. Lett., 46, 70247034, https://doi.org/10.1029/2019GL082092.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., and Coauthors, 2020: The making of the New European Wind Atlas—Part 1: Model sensitivity. Geosci. Model Dev., 13, 50535078, https://doi.org/10.5194/gmd-13-5053-2020.

    • Search Google Scholar
    • Export Citation
  • Han, B., and Coauthors, 2019: Cloud-resolving model intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. J. Geophys. Res. Atmos., 124, 10901117, https://doi.org/10.1029/2018JD029596.

    • Search Google Scholar
    • Export Citation
  • Hasager, C. B., F. Vejen, W. R. Skrzypiński, and A.-M. Tilg, 2021: Rain erosion load and its effect on leading-edge lifetime and potential of erosion-safe mode at wind turbines in the North Sea and Baltic Sea. Energies, 14, 1959, https://doi.org/10.3390/en14071959.

    • Search Google Scholar
    • Export Citation
  • Hawbecker, P., S. Basu, and L. Manuel, 2017: Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm. Wind Energy, 20, 18031822, https://doi.org/10.1002/we.2122.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoen, B. D., J. E. Diffendorfer, J. T. Rand, L. A. Kramer, C. P. Garrity, and H. E. Hunt, 2018: United States wind turbine database v4.3. U.S. Geological Survey, American Clean Power Association, and Lawrence Berkeley National Laboratory, accessed 14 January 2022, https://doi.org/10.5066/F7TX3DN0.

  • Huffman, G. J., 2019: IMERG v06 quality index. NASA, 5 pp., https://gpm.nasa.gov/sites/default/files/2020-02/IMERGV06_QI_0.pdf.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, E. F. Stocker, and J. Tan, 2019a: V06 IMERG release notes. NASA GSFC Doc., 15 pp., https://gpm.nasa.gov/resources/documents/imerg-v06-release-notes.

  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019b: GPM IMERG Final Precipitation L3 Half Hourly 0.1° × 0.1° V06, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 2 May 2022, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2020a: Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA GSFC Tech. Doc. 612, 83 pp., https://docserver.gesdisc.eosdis.nasa.gov.

  • Huffman, G. J., and Coauthors, 2020b: Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 343–353.

  • Huschke, R. E., Ed., 1959: Glossary of Meteorology. Amer. Meteor. Soc., 638 pp.

  • International Electrotechnical Commission, 2019: Wind energy generation systems—Part 24: Lightning protection. International Standard IEC61400, International Electrotechnical Commission, 191 pp., https://standards.iteh.ai/catalog/standards/iec/6aae4b87-f0f6-474c-a3ce-da2b91697249/iec-61400-24-2019.

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Jones, K. F., A. C. Ramsay, and J. N. Lott, 2004: Icing severity in the December 2002 freezing-rain storm from ASOS data. Mon. Wea. Rev., 132, 16301644, https://doi.org/10.1175/1520-0493(2004)132<1630:ISITDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170, https://doi.org/10.1007/978-1-935704-13-3_16.

  • Katsaprakakis, D. A., N. Papadakis, and I. Ntintakis, 2021: A comprehensive analysis of wind turbine blade damage. Energies, 14, 5974, https://doi.org/10.3390/en14185974.

    • Search Google Scholar
    • Export Citation
  • Keegan, M. H., D. Nash, and M. Stack, 2013: Numerical modelling of hailstone impact on the leading edge of a wind turbine blade. Proc. EWEA Annual Wind Energy Event 2013, Vienna, Austria, European Wind Energy Association, 1–11, https://strathprints.strath.ac.uk/id/eprint/42830.

  • Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling, 2021: Challenges and outlook for convection-permitting climate modelling. Philos. Trans. Roy. Soc., A379, 20190547, https://doi.org/10.1098/rsta.2019.0547.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., B. Ferrier, M. T. Stoelinga, E. Szoke, S. J. Weiss, and J. S. Kain, 2005: The use of simulated radar reflectivity fields in the diagnosis of mesoscale phenomena from high-resolution WRF model forecasts. Preprints, 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., J4J.7, https://ams.confex.com/ams/32Rad11Meso/webprogram/Paper97032.html.

  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Search Google Scholar
    • Export Citation
  • Labriola, J., N. Snook, Y. Jung, and M. Xue, 2019a: Explicit ensemble prediction of hail in 19 May 2013 Oklahoma City thunderstorms and analysis of hail growth processes with several multimoment microphysics schemes. Mon. Wea. Rev., 147, 11931213, https://doi.org/10.1175/MWR-D-18-0266.1.

    • Search Google Scholar
    • Export Citation
  • Labriola, J., N. Snook, M. Xue, and K. W. Thomas, 2019b: Forecasting the 8 May 2017 severe hail storm in Denver, Colorado, at a convection-allowing resolution: Understanding rimed ice treatments in multimoment microphysics schemes and their effects on hail size forecasts. Mon. Wea. Rev., 147, 30453068, https://doi.org/10.1175/MWR-D-18-0319.1.

    • Search Google Scholar
    • Export Citation
  • Letson, F., R. J. Barthelmie, and S. C. Pryor, 2020a: RADAR-derived precipitation climatology for wind turbine blade leading edge erosion. Wind Energy Sci., 5, 331347, https://doi.org/10.5194/wes-5-331-2020.

    • Search Google Scholar
    • Export Citation
  • Letson, F., T. J. Shepherd, R. J. Barthelmie, and S. C. Pryor, 2020b: WRF modelling of deep convection and hail for wind power applications. J. Appl. Meteor. Climatol., 59, 17171733, https://doi.org/10.1175/JAMC-D-20-0033.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Proc. 19th Conf. Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Madi, E., K. Pope, W. Huang, and T. Iqbal, 2019: A review of integrating ice detection and mitigation for wind turbine blades. Renewable Sustainable Energy Rev., 103, 269281, https://doi.org/10.1016/j.rser.2018.12.019.

    • Search Google Scholar
    • Export Citation
  • Major, D., J. Palacios, M. Maughmer, and S. Schmitz, 2021: Aerodynamics of leading-edge protection tapes for wind turbine blades. Wind Eng., 45, 12961316, https://doi.org/10.1177/0309524X20975446.

    • Search Google Scholar
    • Export Citation
  • Makarskas, V., M. Jurevičius, J. Zakis, A. Kilikevičius, S. Borodinas, J. Matijošius, and K. Kilikevičienė, 2021: Investigation of the influence of hail mechanical impact parameters on photovoltaic modules. Eng. Failure Anal., 124, 105309, https://doi.org/10.1016/j.engfailanal.2021.105309.

    • Search Google Scholar
    • Export Citation
  • Marion, G., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Search Google Scholar
    • Export Citation
  • Meredith, E. P., U. Ulbrich, and H. W. Rust, 2020: Subhourly rainfall in a convection-permitting model. Environ. Res. Lett., 15, 034031, https://doi.org/10.1088/1748-9326/ab6787.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Min, K.-H., S. Choo, D. Lee, and G. Lee, 2015: Evaluation of WRF cloud microphysics schemes using radar observations. Wea. Forecasting, 30, 15711589, https://doi.org/10.1175/WAF-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. Krishnamurthy, 2020: Doppler lidar (DL) instrument handbook. DOE Rep. DOE/SC-ARM-TR-101, 58 pp., https://www.arm.gov/publications/tech_reports/handbooks/dl_handbook.pdf.

  • Nisi, L., A. Hering, U. Germann, and O. Martius, 2018: A 15-year hail streak climatology for the Alpine region. Quart. J. Roy. Meteor. Soc., 144, 14291449, https://doi.org/10.1002/qj.3286.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2017: WSR-88D meteorological observations. Part C: WAS-88D products and algorithms. Federal Meteorological Handbook 11, Tech. Rep. FCM-H11C-2017, Office of the Federal Coordinator for Meteorological Services, 396 pp., https://www.icams-portal.gov/resources/ofcm/fmh/FMH11/fmh11partC.pdf.

  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. Electron. J. Severe Storms Meteor., 13, https://ejssm.com/ojs/index.php/site/article/view/69.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Pedersen, M. C., T. Ahsbahs, W. Langreder, and M. L. Thøgersen, 2022: On the modelling chain for production loss assessment for wind turbines in cold climates. Proc. Int. Workshop on Atmospheric Icing of Structures, Montreal, QC, Canada, McGill University, 047, https://www.mcgill.ca/iwais2022/papers.

  • Prein, A. F., and G. J. Holland, 2018: Global estimates of damaging hail hazard. Wea. Climate Extremes, 22, 1023, https://doi.org/10.1016/j.wace.2018.10.004.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., A. Gobiet, M. Suklitsch, H. Truhetz, N. K. Awan, K. Keuler, and G. Georgievski, 2013: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, https://doi.org/10.1007/s00382-013-1744-6.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, D. Wang, and S. E. Giangrande, 2021: Sensitivity of organized convective storms to model grid spacing in current and future climates. Philos. Trans. Roy. Soc., A379, 20190546, https://doi.org/10.1098/rsta.2019.0546.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and A. N. Hahmann, 2019: Downscaling wind. Oxford Research Encyclopedia: Climate Science, H. von Storch, Ed., Oxford University Press, 1–37.

  • Pryor, S. C., F. W. Letson, and R. J. Barthelmie, 2020: Variability in wind energy generation across the contiguous United States. J. Appl. Meteor. Climatol., 59, 20212039, https://doi.org/10.1175/JAMC-D-20-0162.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, L., E.-S. Im, J. Hur, and K.-M. Shim, 2020: Added value of very high resolution climate simulations over South Korea using WRF modeling system. Climate Dyn., 54, 173189, https://doi.org/10.1007/s00382-019-04992-x.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. B. Chelton, 2010: Comparisons of daily sea surface temperature analyses for 2007–08. J. Climate, 23, 35453562, https://doi.org/10.1175/2010JCLI3294.1.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre-and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, https://doi.org/10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Scaff, L., A. F. Prein, Y. Li, C. Liu, R. Rasmussen, and K. Ikeda, 2020: Simulating the convective precipitation diurnal cycle in North America’s current and future climate. Climate Dyn., 55, 369382, https://doi.org/10.1007/s00382-019-04754-9.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Schlie, E. E.-J., D. Wuebbles, S. Stevens, R. Trapp, and B. Jewett, 2019: A radar‐based study of severe hail outbreaks over the contiguous United States for 2000–2011. Int. J. Climatol., 39, 278291, https://doi.org/10.1002/joc.5805.

    • Search Google Scholar
    • Export Citation
  • Segele, Z. T., L. M. Leslie, and P. J. Lamb, 2013: Weather research and forecasting model simulations of extended warm-season heavy precipitation episode over the US Southern Great Plains: Data assimilation and microphysics sensitivity experiments. Tellus, 65A, 19599, https://doi.org/10.3402/tellusa.v65i0.19599.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., B. Dolan, W. F. Krajewski, S. A. Rutledge, and W. Petersen, 2015: Comparison of single-and dual-polarization–based rainfall estimates using NEXRAD data for the NASA Iowa flood studies project. J. Hydrometeor., 16, 16581675, https://doi.org/10.1175/JHM-D-14-0169.1.

    • Search Google Scholar
    • Export Citation
  • Shippert, T., R. Newsom, and L. Riihimaki, 2010: Doppler Lidar Horizontal Wind Profiles (DLPROFWIND4NEWS) wind speed dataset for the SGP Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) Data Center. Subset used: 2 November 2010–17 April 2022, accessed 12 May 2022, https://doi.org/10.5439/1178582.

  • Shpund, J., and Coauthors, 2019: Simulating a mesoscale convective system using WRF with a new spectral bin microphysics: 1: Hail vs graupel. J. Geophys. Res. Atmos., 124, 14 07214 101, https://doi.org/10.1029/2019JD030576.

    • Search Google Scholar
    • Export Citation
  • Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Wea. Forecasting, 31, 811825, https://doi.org/10.1175/WAF-D-15-0152.1.

    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus Jr., 2020: On the forecast sensitivity of MCS cold pools and related features to horizontal grid spacing in convection-allowing WRF simulations. Wea. Forecasting, 35, 325346, https://doi.org/10.1175/WAF-D-19-0016.1.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., 2000: Use of the “odds ratio” for diagnosing forecast skill. Wea. Forecasting, 15, 221232, https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2017: Practical Meteorology: An Algebra-Based Survey of Atmospheric Science. University of British Columbia, 940 pp.

  • Sun, X., M. Xue, J. Brotzge, R. A. McPherson, X.-M. Hu, and X.-Q. Yang, 2016: An evaluation of dynamical downscaling of central plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J. Geophys. Res. Atmos., 121, 13 80113 825, https://doi.org/10.1002/2016JD024796.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, https://doi.org/10.1002/2015JD023986.

    • Search Google Scholar
    • Export Citation
  • Tilg, A.-M., C. B. Hasager, H.-J. Kirtzel, and P. Hummelshoj, 2020: Brief communication: Nowcasting of precipitation for leading edge erosion-safe mode. Wind Energy Sci., 5, 977981, https://doi.org/10.5194/wes-5-977-2020.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Climate, 32, 54935509, https://doi.org/10.1175/JCLI-D-18-0740.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., and Coauthors, 2017: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2.

    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high‐resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization. Quart. J. Roy. Meteor. Soc., 141, 433448, https://doi.org/10.1002/qj.2363.

    • Search Google Scholar
    • Export Citation
  • Wallace, R., K. Friedrich, E. A. Kalina, and P. Schlatter, 2019: Using operational radar to identify deep hail accumulations from thunderstorms. Wea. Forecasting, 34, 133150, https://doi.org/10.1175/WAF-D-18-0053.1.

    • Search Google Scholar
    • Export Citation
  • Wang, D., M. Bartholomew, and Y. Shi, 2016: Laser Disdrometer (LD) dataset for the SGP Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) Data Center. Subset used: 2 November 2016–8 April 2022, accessed 18 April 2022, https://doi.org/10.5439/1779709.

  • Wang, D., S. E. Giangrande, Z. Feng, J. C. Hardin, and A. F. Prein, 2020: Updraft and downdraft core size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons. J. Geophys. Res. Atmos., 125, e2019JD031774, https://doi.org/10.1029/2019JD031774.

    • Search Google Scholar
    • Export Citation
  • Wendt, N. A., and I. L. Jirak, 2021: An hourly climatology of operational MRMS MESH-diagnosed severe and significant hail with comparisons to storm data hail reports. Wea. Forecasting, 36, 645659, https://doi.org/10.1175/WAF-D-20-0158.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2020: Statistical Methods in the Atmospheric Sciences. 4th ed. Elsevier, 840 pp.

  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res. Atmos., 122, 13 28813 307, https://doi.org/10.1002/2017JD027033.

    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., P. Naveau, O. Martius, S. Engelke, and C. C. Raible, 2021: Evaluating the dependence structure of compound precipitation and wind speed extremes. Earth Syst. Dyn., 12, 116, https://doi.org/10.5194/esd-12-1-2021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 757 757 70
Full Text Views 198 198 18
PDF Downloads 235 235 23

Evaluation of WRF Simulation of Deep Convection in the U.S. Southern Great Plains

S. C. PryoraDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by S. C. Pryor in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4847-3440
,
F. LetsonaDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by F. Letson in
Current site
Google Scholar
PubMed
Close
,
T. ShepherdaDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by T. Shepherd in
Current site
Google Scholar
PubMed
Close
, and
R. J. BarthelmiebSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York

Search for other papers by R. J. Barthelmie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Southern Great Plains (SGP) region exhibits a relatively high frequency of periods with extremely high rainfall rates (RR) and hail. Seven months of 2017 are simulated using the Weather Research and Forecasting (WRF) Model applied at convection-permitting resolution with the Milbrandt–Yau microphysics scheme. Simulation fidelity is evaluated, particularly during intense convective events, using data from ASOS stations, dual-polarization radar, and gridded datasets and observations at the DOE Atmospheric Radiation Measurement site. The spatial gradients and temporal variability of precipitation and the cumulative density functions for both RR and wind speeds exhibit fidelity. Odds ratios > 1 indicate that WRF is also skillful in simulating high composite reflectivity (cREF, used as a measure of widespread convection) and RR > 5 mm h−1 over the domain. Detailed analyses of the 10 days with highest spatial coverage of cREF > 30 dBZ show spatially similar reflectivity fields and high RR in both radar data and WRF simulations. However, during periods of high reflectivity, WRF exhibits a positive bias in terms of very high RR (>25 mm h−1) and hail occurrence, and during the summer and transition months, maximum hail size is underestimated. For some renewable energy applications, fidelity is required with respect to the joint probabilities of wind speed and RR and/or hail. While partial fidelity is achieved for the marginal probabilities, performance during events of critical importance to these energy applications is currently not sufficient. Further research into optimal WRF configurations in support of potential damage quantification for these applications is warranted.

Significance Statement

Heavy rainfall and hail during convective events are challenging for numerical models to simulate in both space and time. For some applications, such as to estimate damage to wind turbine blades and solar panels, fidelity is also required with respect to hail size and joint probabilities of wind speed and hydrometeor type and rainfall rates (RR). This demands fidelity that is seldom evaluated. We show that, although this simulation exhibits fidelity for the marginal probabilities of wind speed, RR, and hail occurrence, the joint probabilities of these properties and the simulation of maximum size of hail are, as yet, not sufficient to characterize potential damage to these renewable energy industries.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu

Abstract

The Southern Great Plains (SGP) region exhibits a relatively high frequency of periods with extremely high rainfall rates (RR) and hail. Seven months of 2017 are simulated using the Weather Research and Forecasting (WRF) Model applied at convection-permitting resolution with the Milbrandt–Yau microphysics scheme. Simulation fidelity is evaluated, particularly during intense convective events, using data from ASOS stations, dual-polarization radar, and gridded datasets and observations at the DOE Atmospheric Radiation Measurement site. The spatial gradients and temporal variability of precipitation and the cumulative density functions for both RR and wind speeds exhibit fidelity. Odds ratios > 1 indicate that WRF is also skillful in simulating high composite reflectivity (cREF, used as a measure of widespread convection) and RR > 5 mm h−1 over the domain. Detailed analyses of the 10 days with highest spatial coverage of cREF > 30 dBZ show spatially similar reflectivity fields and high RR in both radar data and WRF simulations. However, during periods of high reflectivity, WRF exhibits a positive bias in terms of very high RR (>25 mm h−1) and hail occurrence, and during the summer and transition months, maximum hail size is underestimated. For some renewable energy applications, fidelity is required with respect to the joint probabilities of wind speed and RR and/or hail. While partial fidelity is achieved for the marginal probabilities, performance during events of critical importance to these energy applications is currently not sufficient. Further research into optimal WRF configurations in support of potential damage quantification for these applications is warranted.

Significance Statement

Heavy rainfall and hail during convective events are challenging for numerical models to simulate in both space and time. For some applications, such as to estimate damage to wind turbine blades and solar panels, fidelity is also required with respect to hail size and joint probabilities of wind speed and hydrometeor type and rainfall rates (RR). This demands fidelity that is seldom evaluated. We show that, although this simulation exhibits fidelity for the marginal probabilities of wind speed, RR, and hail occurrence, the joint probabilities of these properties and the simulation of maximum size of hail are, as yet, not sufficient to characterize potential damage to these renewable energy industries.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu
Save