Vertical Motions in Orographic Cloud Systems over the Payette River Basin. Part IV: Controls on Supercooled Liquid Water Content and Cloud Droplet Number Concentrations

Troy J. Zaremba aDepartment of Atmospheric Sciences, University of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Troy J. Zaremba in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0731-9706
,
Robert M. Rauber aDepartment of Atmospheric Sciences, University of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts bDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. French bDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
,
Sarah A. Tessendorf cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
Lulin Xue cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Katja Friedrich dDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Courtney Weeks cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Courtney Weeks in
Current site
Google Scholar
PubMed
Close
,
Roy M. Rasmussen cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Melvin L. Kunkel eDepartment of Resource Planning and Operations, Idaho Power Company, Boise, Idaho

Search for other papers by Melvin L. Kunkel in
Current site
Google Scholar
PubMed
Close
, and
Derek R. Blestrud eDepartment of Resource Planning and Operations, Idaho Power Company, Boise, Idaho

Search for other papers by Derek R. Blestrud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the controls on supercooled liquid water content (SLWC) and drop number concentrations (Nt,CDP) over the Payette River basin during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) campaign. During SNOWIE, 27.4% of 1-Hz in situ cloud droplet probe samples were in an environment containing supercooled liquid water (SLW). The interquartile range of SLWC, when present, was found to be 0.02–0.18 g m−3 and 13.3–37.2 cm−3 for Nt,CDP, with the most extreme values reaching 0.40–1.75 g m−3 and 150–320 cm−3 in isolated regions of convection and strong shear-induced turbulence. SLWC and Nt,CDP distributions are shown to be directly related to cloud-top temperature and ice particle concentrations, consistent with past research over other mountain ranges. Two classes of vertical motions were analyzed as potential controls on SLWC and Nt,CDP, the first forced by the orography and fixed in space relative to the topography (stationary waves) and the second transient, triggered by vertical shear and instability within passing synoptic-scale cyclones. SLWC occurrence and magnitudes, and Nt,CDP associated with fixed updrafts were found to be normally distributed about ridgelines when SLW was present. SLW was more likely to form at low altitudes near the terrain slope associated with fixed waves due to higher mixing ratios and larger vertical air parcel displacements at low altitudes. When considering transient updrafts, SLWC and Nt,CDP appear more uniformly distributed over the flight track with little discernable terrain dependence as a result of time and spatially varying updrafts associated with passing weather systems. The implications for cloud seeding over the basin are discussed.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Troy Zaremba, tzaremb2@illinois.edu

Abstract

This paper examines the controls on supercooled liquid water content (SLWC) and drop number concentrations (Nt,CDP) over the Payette River basin during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) campaign. During SNOWIE, 27.4% of 1-Hz in situ cloud droplet probe samples were in an environment containing supercooled liquid water (SLW). The interquartile range of SLWC, when present, was found to be 0.02–0.18 g m−3 and 13.3–37.2 cm−3 for Nt,CDP, with the most extreme values reaching 0.40–1.75 g m−3 and 150–320 cm−3 in isolated regions of convection and strong shear-induced turbulence. SLWC and Nt,CDP distributions are shown to be directly related to cloud-top temperature and ice particle concentrations, consistent with past research over other mountain ranges. Two classes of vertical motions were analyzed as potential controls on SLWC and Nt,CDP, the first forced by the orography and fixed in space relative to the topography (stationary waves) and the second transient, triggered by vertical shear and instability within passing synoptic-scale cyclones. SLWC occurrence and magnitudes, and Nt,CDP associated with fixed updrafts were found to be normally distributed about ridgelines when SLW was present. SLW was more likely to form at low altitudes near the terrain slope associated with fixed waves due to higher mixing ratios and larger vertical air parcel displacements at low altitudes. When considering transient updrafts, SLWC and Nt,CDP appear more uniformly distributed over the flight track with little discernable terrain dependence as a result of time and spatially varying updrafts associated with passing weather systems. The implications for cloud seeding over the basin are discussed.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Troy Zaremba, tzaremb2@illinois.edu
Save
  • Abel, S. J., R. J. Cotton, P. A. Barrett, and A. K. Vance, 2014: A comparison of ice water content measurement techniques on the FAAM Bae-146 aircraft. Atmos. Meas. Tech., 7, 30073022, https://doi.org/10.5194/amt-7-3007-2014.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., J. P. Zagrodnik, L. A. McMurdie, A. K. Rowe, and R. A. Houze Jr., 2018: Kelvin–Helmholtz waves in precipitating midlatitude cyclones. J. Atmos. Sci., 75, 27632785, https://doi.org/10.1175/JAS-D-17-0365.1.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Cloud and Precipitation, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

  • Bianco, L., K. Friedrich, J. M. Wilczak, D. Hazen, D. Wolfe, R. Delgado, S. P. Oncley, and J. K. Lundquist, 2017: Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmos. Meas. Tech., 10, 17071721, https://doi.org/10.5194/amt-10-1707-2017.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall, 1994: Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci., 51, 4867, https://doi.org/10.1175/1520-0469(1994)051,0048:IBTAAC.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cann, M. D., and K. Friedrich, 2020: The role of moisture pathways on snowfall amount and distribution in the Payette Mountains of Idaho. Mon. Wea. Rev., 148, 20332048, https://doi.org/10.1175/MWR-D-19-0350.1.

    • Search Google Scholar
    • Export Citation
  • Cann, M. D., K. Friedrich, J. R. French, and D. Behringer, 2022: A case study of cloud-top Kelvin–Helmholtz waves near the dendritic growth zone. J. Atmos. Sci., 79, 531549, https://doi.org/10.1175/JAS-D-21-0106.1.

    • Search Google Scholar
    • Export Citation
  • Chater, A. M., and A. P. Sturman, 1998: Atmospheric conditions influencing the spillover of rainfall to lee of the Southern Alps, New Zealand. Int. J. Climatol., 18, 7792, https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M.

    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, and B. Kosovic, 2018: The impact of boundary layer turbulence on snow growth and precipitation: Idealized large eddy simulations. Atmos. Res., 204, 5466, https://doi.org/10.1016/j.atmosres.2018.01.015.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40, 19842002, https://doi.org/10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Y. Zeng, 2004: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 27802801, https://doi.org/10.1175/MWR2821.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Y. Lin, S. Medina, and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon coast range and cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, https://doi.org/10.1175/2008MWR2369.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 12441259, https://doi.org/10.1175/1520-0469(1981)038<1244:TOOIIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demoz, B. B., R. Zhang, and R. L. Pitter, 1993: An analysis of Sierra Nevada winter orographic storms: Ground-based ice-crystal observations. J. Appl. Meteor., 32, 18261836, https://doi.org/10.1175/1520-0450(1993)032<1826:AAOSNW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorsi, S. W., M. D. Shupe, P. O. G. Persson, D. E. Kingsmill, and L. M. Avallone, 2015: Phase-specific characteristics of wintertime clouds across a midlatitude mountain range. Mon. Wea. Rev., 143, 41814197, https://doi.org/10.1175/MWR-D-15-0135.1.

    • Search Google Scholar
    • Export Citation
  • Faber, S., J. R. French, and R. Jackson, 2018: Laboratory and in-flight evaluation of measurement uncertainties from a commercial cloud droplet probe (CDP). Atmos. Meas. Tech., 11, 36453659, https://doi.org/10.5194/amt-11-3645-2018.

    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach to characterize the variability in mass–dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., J. K. Lundquist, M. Aitken, E. A. Kalina, and R. F. Marshall, 2012: Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations. Geophys. Res. Lett., 39, L03801, https://doi.org/10.1029/2011GL050413.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and Coauthors, 2021: Microphysical characteristics and evolution of seeded orographic clouds. J. Appl. Meteor. Climatol., 60, 909934, https://doi.org/10.1175/JAMC-D-20-0206.1.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., B. Smull, and C. Mass, 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711737, https://doi.org/10.1175/JAS3876.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2005: The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J. Atmos. Oceanic Technol., 22, 225246, https://doi.org/10.1175/JTECH1699.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2010: Vertically pointing airborne Doppler radar observations of Kelvin–Helmholtz billows. Mon. Wea. Rev., 138, 982986, https://doi.org/10.1175/2009MWR3212.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, https://doi.org/10.1175/JAS-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., C. Grasmick, R. M. Rauber, T. J. Zaremba, L. Xue, and K. Friwedrich, 2023: Vertical motions forced by small-scale terrain and cloud microphysical response in extratropical precipitation systems. J. Atmos. Sci., 80, 649669, https://doi.org/10.1175/JAS-D-22-0161.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, https://doi.org/10.1016/0169-8095(94)90001-9.

    • Search Google Scholar
    • Export Citation
  • Grasmick, C., and B. Geerts, 2020: Detailed dual-Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part I: Dynamic structure. J. Atmos. Sci., 77, 17611782, https://doi.org/10.1175/JAS-D-19-0108.1.

    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, X. Chu, J. R. French, and R. M. Rauber, 2021: Detailed dual Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part II: Evidence for precipitation enhancement from observations and modeling. J. Atmos. Sci., 78, 34553472, https://doi.org/10.1175/JAS-D-20-0392.1.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., and R. M. Rauber, 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements taken during the Sierra cooperative pilot project. J. Appl. Meteor., 27, 9891015, https://doi.org/10.1175/1520-0450(1988)027<0989:TCAEOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., L. Vardiman, R. E. Stewart, and A. Huggins, 1983: Supercooled liquid water and ice crystal distributions within Sierra Nevada winter storms. J. Climate Appl. Meteor., 22, 18751886, https://doi.org/10.1175/1520-0450(1983)022<1875:SLWAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heimes, K., and Coauthors, 2022: Vertical motions in orographic cloud systems over the Payette River basin. Part III: An evaluation of the impact of transient vertical motions on targeting during orographic cloud seeding operations. J. Appl. Meteor. Climatol., 61, 17531777, https://doi.org/10.1175/JAMC-D-21-0230.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, G. E., and D. S. Woffinden, 1980: A balloonborne instrument for the measurement of vertical profiles of supercooled liquid water concentration. J. Appl. Meteor., 19, 12851292, https://doi.org/10.1175/1520-0450(1980)019<1285:ABIFTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804, https://doi.org/10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, https://doi.org/10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2021: Dependence of ice microphysical properties on environmental parameters: Results from HAIC-HIWC cayenne field campaign. J. Atmos. Sci., 78, 29572981, https://doi.org/10.1175/JAS-D-21-0015.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 30163043, https://doi.org/10.1175/JAS3999.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, H. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 21312144, https://doi.org/10.1175/JTECH-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2006: Precipitation over concave terrain. J. Atmos. Sci., 63, 22692288, https://doi.org/10.1175/JAS3761.1.

  • Jing, X., and B. Geerts, 2015: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part II: Convective clouds. J. Appl. Meteor. Climatol., 54, 20992117, https://doi.org/10.1175/JAMC-D-15-0056.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Search Google Scholar
    • Export Citation
  • Khanal, S., 2013: Evaluation of airborne-Lidar retrieval of ice water content using in situ probes. M.S. thesis, Dept. of Atmospheric Science, University of Wyoming, 18 pp., https://www.proquest.com/docview/1506926193.

  • Kingsmill, D. E., P. O. G. Persson, S. Haimov, and M. D. Shupe, 2016: Mountain waves and orographic precipitation in a northern Colorado winter storm. Quart. J. Roy. Meteor. Soc., 142, 836853, https://doi.org/10.1002/qj.2685.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particle in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, https://doi.org/10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., M. Murakami, M. Hoshimoto, N. Orikasa, Y. Yamada, H. Mizuno, K. Hamazu, and H. Watanabe, 2004: The characteristics and evolution of orographic snow clouds under weak cold advection. Mon. Wea. Rev., 132, 174191, https://doi.org/10.1175/1520-0493(2004)132<0174:TCAEOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., and Coauthors, 2005: Observations of quasi-stationary and shallow orographic snow clouds: Spatial distributions of supercooled liquid water and snow particles. Mon. Wea. Rev., 133, 743751, https://doi.org/10.1175/MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Lance, S., 2012: Coincidence errors in a cloud droplet probe (CDP) and a cloud and aerosol spectrometer (CAS), and the improved performance of a modified CDP. J. Atmos. Oceanic Technol., 29, 15321541, https://doi.org/10.1175/JTECH-D-11-00208.1.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in‐flight performance in liquid, ice and mixed‐phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, https://doi.org/10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., 1988: Winter diurnal trends of Sierra Nevada supercooled liquid water and precipitation. J. Appl. Meteor., 27, 458472, https://doi.org/10.1175/1520-0450(1988)027<0458:WDTOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1972: The measurement of air velocity and temperature using the NCAR Buffalo Aircraft Measuring system. NCAR Tech. Note NCAR/TN-74+EDD, 39 pp., https://doi.org/10.5065/D6C8277W.

  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 82 pp., https://doi.org/10.1017/CBO9780511619649.

  • Long, A. B., and E. J. Carter, 1996: Australian winter mountain storm clouds: Precipitation augmentation potential. J. Appl. Meteor., 35, 14571464, https://doi.org/10.1175/1520-0450(1996)035<1457:AWMSCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majewski, A., and J. R. French, 2020: Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud. Atmos. Chem. Phys., 20, 50355054, https://doi.org/10.5194/acp-20-5035-2020.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. A. Finlon, D. M. Stechman, W. Wu, R. C. Jackson, and M. Freer, 2018: University of Illinois/Oklahoma optical array probe (OAP) processing software. Zenodo, https://doi.org/10.5281/zenodo.1285969.

  • Medina, S., and R. A. Houze Jr., 2015: Small-scale precipitation elements in midlatitude cyclones crossing the California Sierra Nevada. Mon. Wea. Rev., 143, 28422870, https://doi.org/10.1175/MWR-D-14-00124.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze Jr., and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, https://doi.org/10.1175/JAS3554.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., E. Sukovich, and R. A. Houze Jr., 2007: Vertical structures of precipitation in cyclones crossing the Oregon cascades. Mon. Wea. Rev., 135, 35653586, https://doi.org/10.1175/MWR3470.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, and X. Jing, 2015: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A case study of a shallow orographic cloud with large supercooled droplets. J. Geophys. Res. Atmos., 120, 60566079, https://doi.org/10.1002/2014JD022693.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and G. Vali, 1983: Observations of liquid water in orographic clouds over Elk Mountain. J. Atmos. Sci., 40, 13001312, https://doi.org/10.1175/1520-0469(1983)040<1300:OOLWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2018: Evaluation of the Wyoming weather modification pilot project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteor. Climatol., 57, 26392660, https://doi.org/10.1175/JAMC-D-17-0335.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324, https://doi.org/10.1175/1520-0450(1992)031<0003:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during winter-time storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25, 489504, https://doi.org/10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1987: Supercooled liquid water structure of a shallow orographic cloud system in southern Utah. J. Climate Appl. Meteor., 26, 208215, https://doi.org/10.1175/1520-0450(1987)026<0208:SLWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023, https://doi.org/10.1175/1520-0469(1991)048<3C1005:AEFTEO>3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. O. Grant, D. X. Feng, and J. B. Snider, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25, 468488, https://doi.org/10.1175/1520-0450(1986)025<0468:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2019: Wintertime orographic cloud seeding—A review. J. Appl. Meteor. Climatol., 58, 21172140, https://doi.org/10.1175/JAMC-D-18-0341.1.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., 1979: The onset and early growth of snow crystals by accretion of droplets. J. Atmos. Sci., 36, 870881, https://doi.org/10.1175/1520-0469(1979)036<0870:TOAEGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., J. B. Snider, and J. L. Coen, 2000: Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation. J. Appl. Meteor., 39, 733759, https://doi.org/10.1175/1520-0450(2000)039<0733:IOSEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and G. Vali, 1987: Ice crystal production by mountain surfaces. J. Climate Appl. Meteor., 26, 11521168, https://doi.org/10.1175/1520-0450(1987)026<1152:ICPBMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and elevated convection in the comma-head region of continental of winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., R. M. Rauber, and J. B. Snider, 1986: Multiple remote sensor observations of supercooled liquid water in a winter storm at Beaver, Utah. J. Climate Appl. Meteor., 25, 825834, https://doi.org/10.1175/1520-0450(1986)025<0825:MRSOOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., A. W. Huggins, A. B. Long, J. B. Snider, and R. J. Meitín, 1990: Investigations of a winter mountain storm in Utah. Part II: Mesoscale structure, supercooled liquid water development, and precipitation processes. J. Atmos. Sci., 47, 13231350, https://doi.org/10.1175/1520-0469(1990)047<1323:IOAWMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwarzenboeck, A., G. Mioche, A. Armetta, A. Herber, and J.-F. Gayet, 2009: Response of the Nevzorov hot wire probe in clouds dominated by droplet conditions in the drizzle size range. Atmos. Meas. Tech., 2, 779788, https://doi.org/10.5194/amt-2-779-2009.

    • Search Google Scholar
    • Export Citation
  • Shafer, J. C., W. J. Steenburgh, J. A. W. Cox, and J. P. Monteverdi, 2006: Terrain influences on synoptic storm structure and mesoscale precipitation distribution during IPEX IOP3. Mon. Wea. Rev., 134, 478497, https://doi.org/10.1175/MWR3051.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, https://doi.org/10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2019: 100 years of progress on mountain meteorology research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0022.1.

  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Um, J., and Coauthors, 2018: Microphysical characteristics of frozen droplet aggregates from deep convective clouds. Atmos. Chem. Phys., 18, 16 91516 930, https://doi.org/10.5194/acp-18-16915-2018.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022a: Vertical motions in orographic cloud systems over the Payette River basin. Part I: Recovery of vertical motions and their uncertainty from airborne Doppler radial velocity measurements. J. Appl. Meteor. Climatol., 61, 17131731, https://doi.org/10.1175/JAMC-D-21-0228.1.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022b: Vertical motions in orographic cloud systems over the Payette River basin. Part II: Fixed and transient updrafts and their relationship to forcing. J. Appl. Meteor. Climatol., 61, 17331751, https://doi.org/10.1175/JAMC-D-21-0229.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1567 1567 10
Full Text Views 152 152 2
PDF Downloads 175 175 2