Comparisons of Rainfall Microphysical Characteristics between the Southeastern Tibetan Plateau and Low-Altitude Areas

Xin Xu aLand-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xin Xu in
Current site
Google Scholar
PubMed
Close
,
Xuelong Chen aLand-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xuelong Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3892-5298
,
Dianbin Cao aLand-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Dianbin Cao in
Current site
Google Scholar
PubMed
Close
,
Yajing Liu aLand-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yajing Liu in
Current site
Google Scholar
PubMed
Close
,
Luhan Li aLand-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Luhan Li in
Current site
Google Scholar
PubMed
Close
, and
Yaoming Ma aLand-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
bCollege of Atmospheric Science, Lanzhou University, Lanzhou, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
dNational Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Dingri, China
eKathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing, China
fChina-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad, Pakistan

Search for other papers by Yaoming Ma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The low air pressure and density over the Tibetan Plateau may have an impact on the microphysical features of rainfall. Using a two-dimensional video disdrometer (2DVD), a Micro Rain Radar (MRR), and a microwave radiometer (MWR), the features of the raindrop size distribution (DSD) on the southeastern Tibetan Plateau (SETP) are explored and compared with those in low-altitude regions. The falling speed of raindrops on the SETP is higher than that in low-altitude areas. Under different rainfall-rate categories, the number concentration and the maximum diameter of raindrops on the SETP are smaller than those in low-altitude regions. The convective rainfall on the SETP is more maritime-like because the South Asian summer monsoon brings water vapor from the ocean here. For stratiform and convective rainfall, the SETP has more small-sized raindrops than low-altitude locations. The mass-weighted mean diameters (Dm) on the SETP are the smallest among six sites. The generalized intercept parameter (Nw) of stratiform rainfall is balanced at a low rainfall rate, while that of convective rainfall is balanced at a high rainfall rate. Furthermore, for a given μ (the shape parameter of gamma distribution) value, the λ (the slope parameter of gamma distribution) value on the SETP is the highest of the six sites.

Significance Statement

For the occurrence and progression of rainfall, microphysical processes (for instance, collision, fragmentation, coalescence, and evaporation) that take place when rainfall particles descend are crucial. A key factor in the microphysical features of rainfall that varies with rainfall rates and types is the raindrop size distribution (DSD). The southeastern Tibetan Plateau (SETP)’s unique terrain ensures that there is enough moisture for rain to fall there, but little is known about the microphysical aspects of this type of precipitation. There has not been enough research done on how the high altitude affects the microphysical features of rainfall. The microphysical features of rainfall in this area must thus be studied.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuelong Chen, x.chen@itpcas.ac.cn

Abstract

The low air pressure and density over the Tibetan Plateau may have an impact on the microphysical features of rainfall. Using a two-dimensional video disdrometer (2DVD), a Micro Rain Radar (MRR), and a microwave radiometer (MWR), the features of the raindrop size distribution (DSD) on the southeastern Tibetan Plateau (SETP) are explored and compared with those in low-altitude regions. The falling speed of raindrops on the SETP is higher than that in low-altitude areas. Under different rainfall-rate categories, the number concentration and the maximum diameter of raindrops on the SETP are smaller than those in low-altitude regions. The convective rainfall on the SETP is more maritime-like because the South Asian summer monsoon brings water vapor from the ocean here. For stratiform and convective rainfall, the SETP has more small-sized raindrops than low-altitude locations. The mass-weighted mean diameters (Dm) on the SETP are the smallest among six sites. The generalized intercept parameter (Nw) of stratiform rainfall is balanced at a low rainfall rate, while that of convective rainfall is balanced at a high rainfall rate. Furthermore, for a given μ (the shape parameter of gamma distribution) value, the λ (the slope parameter of gamma distribution) value on the SETP is the highest of the six sites.

Significance Statement

For the occurrence and progression of rainfall, microphysical processes (for instance, collision, fragmentation, coalescence, and evaporation) that take place when rainfall particles descend are crucial. A key factor in the microphysical features of rainfall that varies with rainfall rates and types is the raindrop size distribution (DSD). The southeastern Tibetan Plateau (SETP)’s unique terrain ensures that there is enough moisture for rain to fall there, but little is known about the microphysical aspects of this type of precipitation. There has not been enough research done on how the high altitude affects the microphysical features of rainfall. The microphysical features of rainfall in this area must thus be studied.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuelong Chen, x.chen@itpcas.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.6587 MB)
Save
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Bai, A.-J., C.-H. Liu, and X.-D. Liu, 2008: Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis (in Chinese). Chin. J. Geophys., 51, 704714, https://doi.org/10.1002/cjg2.1242.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., J. H. Lowenstein, Y. Huang, Z. Cui, S. Davies, and K. S. Carslaw, 2013: The production of warm rain in shallow maritime cumulus clouds. Quart. J. Roy. Meteor. Soc., 139, 2031, https://doi.org/10.1002/qj.1972.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau (in Chinese). Chin. Sci. Bull., 61, 17061720, https://doi.org/10.1360/N972015-01292.

    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Yang, and J. Pu, 2013: Statistical characteristics of raindrop size distribution in the meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91, 215227, https://doi.org/10.2151/jmsj.2013-208.

    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Wang, and D. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteor. Climatol., 55, 621634, https://doi.org/10.1175/JAMC-D-15-0127.1.

    • Search Google Scholar
    • Export Citation
  • Chen, B., Z. Hu, L. Liu, and G. Zhang, 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX‐III. J. Geophys. Res. Atmos., 121, 11 09211 106, https://doi.org/10.1002/2017JD027233.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and X. Xu, 2022: Scientific Expedition and Research Report for the Yarlung Tsangbo Grand CanyonImplication for Water Vapor Transmission. Science Press, 189 pp.

  • Chen, X., D. Cao, Y. Liu, X. Xu, and Y. Ma, 2023: An observational view of rainfall characteristics and evaluation of ERA5 diurnal cycle in the Yarlung Tsangbo Grand Canyon, China. Quart. J. Roy. Meteor. Soc., 149, 14591472, https://doi.org/10.1002/qj.4468.

    • Search Google Scholar
    • Export Citation
  • College of Atmospheric Sciences of Lanzhou University, 2018: Microwave radiometer. Lanzhou University, http://atmoseng.lzu.edu.cn/lzupage/2018/11/06/N20181106145529.html.

  • Cui, Z., S. Davies, K. S. Carslaw, and A. M. Blyth, 2011: The response of precipitation to aerosol through riming and melting in deep convective clouds. Atmos. Chem. Phys., 11, 34953510, https://doi.org/10.5194/acp-11-3495-2011.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., and Y. Zhang, 2017: Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings. Sci. Rep., 7, 5057, https://doi.org/10.1038/s41598-017-05345-6.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, https://doi.org/10.1175/JTECH-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Z., X. Dong, L. Zhou, W. Cui, J. Wang, R. Wan, L. Leng, and B. Xi, 2020: Statistical characteristics of raindrop size distributions and parameters in Central China during the meiyu seasons. J. Geophys. Res. Atmos., 125, e2019JD031954, https://doi.org/10.1029/2019JD031954.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2020: Simulating observations of Southern Ocean clouds and implications for climate. J. Geophys. Res. Atmos., 125, e2020JD032619, https://doi.org/10.1029/2020JD032619.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Gong, M., M. Li, L. Shu, N. Chang, P. Xu, Y. Ma, F. Sun, and Y. Yang, 2022: Microphysical analysis of precipitation in the central and eastern margins of the Tibetan Plateau. Atmosphere, 13, 1082, https://doi.org/10.3390/atmos13071082.

    • Search Google Scholar
    • Export Citation
  • Guo, X., D. Meng, X. Chen, and X. Li, 2022: Validation and comparison of seven land surface evapotranspiration products in the Haihe River Basin, China. Remote Sens., 14, 4308, https://doi.org/10.3390/rs14174308.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, C.-C.-J. Chen, A. Bansemer, A. Gettelman, P. R. Field, and C. Liu, 2020: Contributions of the liquid and ice phases to global surface precipitation: Observations and global climate modeling. J. Atmos. Sci., 77, 26292648, https://doi.org/10.1175/JAS-D-19-0352.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, L., J. Chen, K. Yang, Y. Yang, W. Huang, X. Zhang, and F. Chen, 2023: The northern boundary of the Asian summer monsoon and division of westerlies and monsoon regimes over the Tibetan Plateau in present-day. Sci. China Earth Sci., 66, 882893, https://doi.org/10.1007/s11430-022-1086-1.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., Z. Ruan, M. Wei, R. Ge, F. Li, and Y. Ruan, 2019: Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res., 222, 4761, https://doi.org/10.1016/j.atmosres.2019.01.022.

    • Search Google Scholar
    • Export Citation
  • Jin, Q., Y. Yuan, H. J. Liu, C. E. Shi, and J. B. Li, 2015: Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer (in Chinese). Acta Meteor. Sin., 73, 778788, https://doi.org/10.11676/qxxb2015.036.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. S., Z. Cui, L. A. Lee, J. P. Gosling, A. M. Blyth, and K. S. Carslaw, 2015: Evaluating uncertainty in convective cloud microphysics using statistical emulation. J. Adv. Model. Earth Syst., 7, 162187, https://doi.org/10.1002/2014MS000383.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. E. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, https://doi.org/10.1175/2010JAMC2243.1.

    • Search Google Scholar
    • Export Citation
  • Lai, R., X. Liu, S. Hu, H. Xiao, F. Xia, L. Feng, and H. Li, 2022: Raindrop size distribution characteristic differences during the dry and wet seasons in South China. Atmos. Res., 266, 105947, https://doi.org/10.1016/j.atmosres.2021.105947.

    • Search Google Scholar
    • Export Citation
  • Lawson, P., C. Gurganus, S. Woods, and R. Bruintjes, 2017: Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a “new” secondary ice process. J. Atmos. Sci., 74, 28992920, https://doi.org/10.1175/JAS-D-17-0033.1.

    • Search Google Scholar
    • Export Citation
  • Lei, L., R. Ma, L. Zhu, G. Cheng, R. Chen, and J. Qin, 2018: Application of ground-based multi-channel microwave radiometer in atmospheric remote sensing (in Chinese). Fire Control Radar Technol., 47, 1116.

    • Search Google Scholar
    • Export Citation
  • Li, Q., J. Wei, J. Yin, Z. Qiao, J. Cao, and Y. Shi, 2022: Microphysical characteristics of raindrop size distribution and implications for radar rainfall estimation over the northeastern Tibetan Plateau. J. Geophys. Res. Atmos., 127, e2021JD035575, https://doi.org/10.1029/2021JD035575.

    • Search Google Scholar
    • Export Citation
  • List, R., C. Fung, and R. Nissen, 2009: Effects of pressure on collision, coalescence, and breakup of raindrops. Part I: Experiments at 50 kPa. J. Atmos. Sci., 66, 21902203, https://doi.org/10.1175/2009JAS2863.1.

    • Search Google Scholar
    • Export Citation
  • Liu, L., J. Zheng, Z. Ruan, Z. Cui, Z. Hu, S. Wu, G. Dai, and Y. Wu, 2015: The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the various radars. Acta Meteor. Sin., 73, 635647.

    • Search Google Scholar
    • Export Citation
  • Liu, X., D. Liu, L. Guo, L. Lianfa, and F. Jinyan, 2019: The observational precision of domestic MWP967KV ground-based microwave radiometer. J. Appl. Meteor. Sci., 30, 731744.

    • Search Google Scholar
    • Export Citation
  • Lu, J., J. Huang, X. Guo, Z. Yu, L. Lianfa, and B. Zhang, 2014: A 35-channel microwave radiometer for profiling atmospheric temperature and humidity. Qixiang Keji, 42, 193197.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, https://doi.org/10.1002/2015GL064604.

    • Search Google Scholar
    • Export Citation
  • Nzeukou, A., H. Sauvageot, A. D. Ochou, and C. M. F. Kebe, 2004: Raindrop size distribution and radar parameters at Cape Verde. J. Appl. Meteor., 43, 90105, https://doi.org/10.1175/1520-0450(2004)043<0090:RSDARP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Porcù, F., L. P. D’Adderio, F. Prodi, and C. Caracciolo, 2013: Effects of altitude on maximum raindrop size and fall velocity as limited by collisional breakup. J. Atmos. Sci., 70, 11291134, https://doi.org/10.1175/JAS-D-12-0100.1.

    • Search Google Scholar
    • Export Citation
  • Porcù, F., L. P. D’Adderio, F. Prodi, and C. Caracciolo, 2014: Rain drop size distribution over the Tibetan Plateau. Atmos. Res., 150, 2130, https://doi.org/10.1016/j.atmosres.2014.07.005.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., J. D. Klett, and P. K. Wang, 1998: Microphysics of clouds and precipitation. Aerosol Sci. Technol., 28, 381382, https://doi.org/10.1080/02786829808965531.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258, https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.

  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-distrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31.

  • Thurai, M., V. N. Bringi, P. C. Kennedy, B. Notaros, and P. N. Gatl, 2015: Towards completing the rain drop size distribution spectrum: A case study involving 2D video disdrometer, droplet spectrometer, and polarimetric radar measurements in Greeley, Colorado. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 4B.1, https://ams.confex.com/ams/37RADAR/webprogram/Paper275321.html.

  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, G., R. Zhou, S. Zhaxi, and S. Liu, 2021: Raindrop size distribution measurements on the southeast Tibetan Plateau during the STEP project. Atmos. Res., 249, 105311, https://doi.org/10.1016/j.atmosres.2020.105311.

    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Yuan, and Y. Li, 2017: Does a strong El Niño imply a higher predictability of extreme drought? Sci. Rep., 7, 40741, https://doi.org/10.1038/srep40741.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Zheng, Z. Cheng, and B. Wang, 2020: Characteristics of raindrop size distribution on the eastern slope of the Tibetan Plateau in summer. Atmosphere, 11, 562, https://doi.org/10.3390/atmos11060562.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Wen, G., H. Xiao, H. Yang, Y. Bi, and W. Xu, 2017: Characteristics of summer and winter precipitation over northern China. Atmos. Res., 197, 390406, https://doi.org/10.1016/j.atmosres.2017.07.023.

    • Search Google Scholar
    • Export Citation
  • Wen, J., and Coauthors, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in eastern China. J. Geophys. Res. Atmos., 122, 80338050, https://doi.org/10.1002/2016JD026346.

    • Search Google Scholar
    • Export Citation
  • Wen, L., K. Zhao, G. Zhang, M. Xue, B. Zhou, S. Liu, and X. Chen, 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos., 121, 22652282, https://doi.org/10.1002/2015JD024160.

    • Search Google Scholar
    • Export Citation
  • Wen, L., K. Zhao, Z. Yang, H. Chen, H. Huang, G. Chen, and Z. Yang, 2020: Microphysics of stratiform and convective precipitation during meiyu season in eastern China. J. Geophys. Res. Atmos., 125, e2020JD032677, https://doi.org/10.1029/2020JD032677.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and L. Liu, 2017: Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci., 34, 727736, https://doi.org/10.1007/s00376-016-5235-7.

    • Search Google Scholar
    • Export Citation
  • Xu, S., Z. Li, X. Chen, H. Shi, and L. Liu, 2020: Performance analyses of the domestic MWP967KV microwave radiometer. Foreign Electron. Meas. Technol., 39, 22–28, https://doi.org/10.19652/j.cnki.femt.2002129.

    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119, https://doi.org/10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., and Coauthors, 2018: The third atmospheric scientific experiment for understanding the Earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757776, https://doi.org/10.1175/BAMS-D-16-0050.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, J., L. Liu, H. Chen, Y. Gou, Y. Che, H. Xu, and Q. Li, 2019: Characteristics of warm clouds and precipitation in South China during the pre-flood season using datasets from a cloud radar, a ceilometer, and a disdrometer. Remote Sens., 11, 3045, https://doi.org/10.3390/rs11243045.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., J. Gao, Y. Zhao, L. Zhang, and W. Zhang, 2019: Water vapor transport processes on Asian water tower. Bull. Chin. Acad. Sci., 34, 12101219, https://doi.org/10.16418/j.issn.1000-3045.2019.11.004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 575 575 20
Full Text Views 181 181 2
PDF Downloads 220 220 3