Impacts of Multiscale Components of Initial Perturbations on Error Growth Characteristics and Ensemble Forecasting Skill

Jingzhuo Wang aCMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China
bState Key Laboratory of Severe Weather, China Meteorological Administration, Beijing, China
cKey Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, China

Search for other papers by Jingzhuo Wang in
Current site
Google Scholar
PubMed
Close
,
Jing Chen aCMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China
bState Key Laboratory of Severe Weather, China Meteorological Administration, Beijing, China
cKey Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, China

Search for other papers by Jing Chen in
Current site
Google Scholar
PubMed
Close
,
Hanbin Zhang dInstitute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Hanbin Zhang in
Current site
Google Scholar
PubMed
Close
,
Ruoyun Ma aCMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China
bState Key Laboratory of Severe Weather, China Meteorological Administration, Beijing, China
cKey Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, China

Search for other papers by Ruoyun Ma in
Current site
Google Scholar
PubMed
Close
, and
Fajing Chen aCMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China
bState Key Laboratory of Severe Weather, China Meteorological Administration, Beijing, China
cKey Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, China

Search for other papers by Fajing Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To compare the roles of two kinds of initial perturbations in a convection-permitting ensemble prediction system (CPEPS) and reveal the effects of the differences in large-scale/small-scale perturbation components on the CPEPS, three initial perturbation schemes are introduced, including a dynamical downscaling (DOWN) scheme originating from a coarse-resolution model, a multiscale ensemble transform Kalman filter (ETKF) scheme, and a filtered ETKF (ETKF_LARGE) scheme. First, the comparisons between the DOWN and ETKF schemes reveal that they behave differently in many ways. Specifically, the ensemble spread and forecast error for precipitation in the DOWN scheme are larger than those in the ETKF; the probabilistic forecasting skill for precipitation in the DOWN scheme is better than that in the ETKF at small neighborhood radii, whereas the advantages of the ETKF begin to appear as the neighborhood radius increases; DOWN possesses better spread–skill relationships than ETKF and has comparable probabilistic forecasting skills for nonprecipitation. Second, the comparisons between DOWN and ETKF_LARGE indicate that the differences in the large-scale initial perturbation components are key to the differences between DOWN and ETKF. Third, the comparisons between ETKF and ETKF_LARGE demonstrate that the small-scale initial perturbations are important since they can increase the precipitation spread in the early times and decrease the forecast errors while simultaneously improving the probabilistic forecasting skill for precipitation. Given the advantages of the DOWN and ETKF schemes and the importance of both large-scale and small-scale initial perturbations, multiscale initial perturbations should be constructed in future research.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingzhuo Wang, 15510166003@163.com

Abstract

To compare the roles of two kinds of initial perturbations in a convection-permitting ensemble prediction system (CPEPS) and reveal the effects of the differences in large-scale/small-scale perturbation components on the CPEPS, three initial perturbation schemes are introduced, including a dynamical downscaling (DOWN) scheme originating from a coarse-resolution model, a multiscale ensemble transform Kalman filter (ETKF) scheme, and a filtered ETKF (ETKF_LARGE) scheme. First, the comparisons between the DOWN and ETKF schemes reveal that they behave differently in many ways. Specifically, the ensemble spread and forecast error for precipitation in the DOWN scheme are larger than those in the ETKF; the probabilistic forecasting skill for precipitation in the DOWN scheme is better than that in the ETKF at small neighborhood radii, whereas the advantages of the ETKF begin to appear as the neighborhood radius increases; DOWN possesses better spread–skill relationships than ETKF and has comparable probabilistic forecasting skills for nonprecipitation. Second, the comparisons between DOWN and ETKF_LARGE indicate that the differences in the large-scale initial perturbation components are key to the differences between DOWN and ETKF. Third, the comparisons between ETKF and ETKF_LARGE demonstrate that the small-scale initial perturbations are important since they can increase the precipitation spread in the early times and decrease the forecast errors while simultaneously improving the probabilistic forecasting skill for precipitation. Given the advantages of the DOWN and ETKF schemes and the importance of both large-scale and small-scale initial perturbations, multiscale initial perturbations should be constructed in future research.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingzhuo Wang, 15510166003@163.com
Save
  • Ancell, B. C., A. Bogusz, M. J. Lauridsen, and C. J. Nauert, 2018: Seeding chaos: The dire consequence of numerical noise in NWP perturbation experiments. Bull. Amer. Meteor. Soc., 99, 615628, https://doi.org/10.1175/BAMS-D-17-0129.1.

    • Search Google Scholar
    • Export Citation
  • Beck, J., F. Bouttier, L. Wiegand, C. Gebhardt, C. Eagle, and N. Roberts, 2016: Development and verification of two convection-allowing multi-model ensembles over western Europe. Quart. J. Roy. Meteor. Soc., 142, 28082826, https://doi.org/10.1002/qj.2870.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., T. R. Holt, J. Nachamkin, S. Chen, J. G. McLay, J. D. Doyle, and W. T. Thompson, 2009: Regional ensemble forecasts using the ensemble transform technique. Mon. Wea. Rev., 137, 288298, https://doi.org/10.1175/2008MWR2559.1.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vie, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, https://doi.org/10.1175/MWR-D-12-00031.1.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., and K. R. Mylne, 2009: Ensemble transform Kalman filter perturbations for a regional ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 757766, https://doi.org/10.1002/qj.404.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, https://doi.org/10.1002/qj.234.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caron, J.-F., 2013: Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study. Mon. Wea. Rev., 141, 356374, https://doi.org/10.1175/MWR-D-12-00051.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., C. Keil, and D. Leuenberger, 2012: Constraints on the impact of radar rainfall data assimilation on forecasts of cumulus convection. Quart. J. Roy. Meteor. Soc., 138, 340352, https://doi.org/10.1002/qj.929.

    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dey, S. R. A., G. Leoncini, N. M. Roberts, R. S. Plant, and S. Migliorini, 2014: A spatial view of ensemble spread in convection permitting ensembles. Mon. Wea. Rev., 142, 40914107, https://doi.org/10.1175/MWR-D-14-00172.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955966, https://doi.org/10.1175/BAMS-85-7-955.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben-Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, https://doi.org/10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., and Coauthors, 2014: Forecasting capabilities for the London 2012 Olympics. Bull. Amer. Meteor. Soc., 95, 883896, https://doi.org/10.1175/BAMS-D-13-00102.1.

    • Search Google Scholar
    • Export Citation
  • Guan, C., and Q. Chen, 2008: Experiments and evaluations of global medium range forecast system of T639L60. Meteor. Monogr., 34, 1116.

    • Search Google Scholar
    • Export Citation
  • Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Search Google Scholar
    • Export Citation
  • Harnisch, F., and C. Keil, 2015: Initial conditions for convection-scale ensemble forecasting provided by ensemble data assimilation. Mon. Wea. Rev., 143, 15831600, https://doi.org/10.1175/MWR-D-14-00209.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and S. J. Majumdar, 2007: The contamination of ‘data impact’ in global models by rapidly growing mesoscale instabilities. Quart. J. Roy. Meteor. Soc., 133, 18651875, https://doi.org/10.1002/qj.157.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schar, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831794, https://doi.org/10.1175/BAMS-88-11-1783.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., A. Walser, W. Langhans, and C. Schär, 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904, https://doi.org/10.1002/qj.252.

    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., 2014: Assessing the ensemble spread–error relationship. Mon. Wea. Rev., 142, 11251142, https://doi.org/10.1175/MWR-D-12-00111.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2012: Verification and calibration of neighborhood and object-based probabilities precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 30543077, https://doi.org/10.1175/MWR-D-11-00356.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 25792604, https://doi.org/10.1175/MWR-D-16-0056.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A. , and Coauthors, 2014: Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Mon. Wea. Rev., 142, 10531073, https://doi.org/10.1175/MWR-D-13-00204.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. K., and H. M. Kim, 2014: Characteristics of initial perturbations in the ensemble prediction system of the Korea Meteorological Administration. Wea. Forecasting, 29, 563581, https://doi.org/10.1175/WAF-D-13-00097.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., K. K. Droegemeier, and N. L. Hickmon, 2007: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part II: Storm-scale experiments. Mon. Wea. Rev., 135, 759782, https://doi.org/10.1175/MWR3323.1.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, https://doi.org/10.1002/qj.2238.

    • Search Google Scholar
    • Export Citation
  • Leoncini, G., R. S. Plant, S. L. Gray, and P. A. Clark, 2010: Perturbation growth at the convective scale for CSIP IOP18. Quart. J. Roy. Meteor. Soc., 136, 653670, https://doi.org/10.1002/qj.587.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Li, and M. Xu, 2019: Analysis of terrain height effects on the asymmetric precipitation patterns during the landfall of Typhoon Meranti (2010). Atmos. Climate Sci., 9, 331345, https://doi.org/10.4236/acs.2019.93024.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 9991013, https://doi.org/10.1175/BAMS-D-15-00235.1.

    • Search Google Scholar
    • Export Citation
  • Mori, P., T. Schwitalla, M. B. Ware, K. Warrach-Sagi, and V. Wulfmeyer, 2021: Downscaling of seasonal ensemble forecasts to the convection-permitting scale over the Horn of Arica using the WRF model. Int. J. Climatol., 41, E1791E1811, https://doi.org/10.1002/joc.6809.

    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2016: Using convective-allowing ensembles to understand the predictability of an extreme rainfall event. Mon. Wea. Rev., 144, 36513676, https://doi.org/10.1175/MWR-D-16-0083.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4966, https://doi.org/10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., Y. Shen, J. Yu, and A. Xiong, 2015: An experimental of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteor. Sin., 73, 177186, https://doi.org/10.11676/qxxb2015.010.

    • Search Google Scholar
    • Export Citation
  • Peralta, C., Z. B. Bouallègue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res., 117, D07108, https://doi.org/10.1029/2011JD016581.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854866, https://doi.org/10.1002/qj.2686.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., H. Seko, M. Kunii, and T. Miyoshi, 2012: Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. Tellus, 64A, 11594, https://doi.org/10.3402/tellusa.v64i0.11594.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and M. S. Wandishin, 2000: The correspondence ratio in forecast evaluation. Wea. Forecasting, 15, 593602, https://doi.org/10.1175/1520-0434(2000)015<0593:TCRIFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and N. Yussouf, 2007: Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system. Wea. Forecasting, 22, 317, https://doi.org/10.1175/WAF968.1.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., 2001: Ensemble forecasting in WRF. Bull. Amer. Meteor. Soc., 82, 695697, https://doi.org/10.1175/1520-0477(2001)082<0681:MSGMIW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walser, A., D. Lüthi, and C. Schär, 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132, 560577, https://doi.org/10.1175/1520-0493(2004)132<0560:POPIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Chen, J. Du, Y. Zhang, Y. Xia, and G. Deng, 2018a: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781796, https://doi.org/10.1175/MWR-D-17-0223.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Chen, Z. Zhuang, H. Zhang, and J. Wang, 2018b: Characteristics of initial perturbation growth rate in the regional ensemble prediction system of GRAPES (in Chinese). Chin. J. Atmos. Sci., 42, 367382, https://doi.org/10.3878/j.issn.1006-9895.1708.17141.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Chen, H. Zhang, H. Tian, and Y. Shi, 2021: Initial perturbations based on ensemble transform Kalman filter with rescaling method for ensemble forecasting. Wea. Forecasting, 36, 823842, https://doi.org/10.1175/WAF-D-20-0176.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Chen, H. Xue, H. Li, and H. Zhang, 2022: The roles of small-scale topographic perturbations in precipitation forecasting using a convection-permitting ensemble prediction system over southern China. Quart. J. Roy. Meteor. Soc., 148, 24682489, https://doi.org/10.1002/qj.4312.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Chen, H. Li, H. Xue, and Z. Xu, 2023: The roles of chaos seeding and multiple perturbations in convection-permitting ensemble forecasting over southern China. Wea. Forecasting, 38, 15191537, https://doi.org/10.1175/WAF-D-22-0177.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, and ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605, https://doi.org/10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Bellus, J.-F. Geleyn, X. Ma, W. Tian, and F. Weidle, 2014: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 20432059, https://doi.org/10.1175/MWR-D-12-00354.1.

    • Search Google Scholar
    • Export Citation
  • Weyn, J. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 21912210, https://doi.org/10.1175/JAS-D-17-0006.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Chen, X. Zhi, X. Li, and Y. Sun, 2014: Study on the application of GRAPES regional ensemble prediction system. Meteor. Mon., 40, 10761087.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Chen, X. Zhi, Y. Wang, and Y. Wang, 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 11431155, https://doi.org/10.1007/s00376-015-4232-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Z. Meng, 2019: Warm-sector heavy rainfall in southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon. Wea. Rev., 147, 44614480, https://doi.org/10.1175/MWR-D-19-0110.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., 2018: Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc., 144, 28422862, https://doi.org/10.1002/qj.3411.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., M. Xue, B. Li, J. Chen, and Z. Tao, 2016: Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv. Atmos. Sci., 33, 12181232, https://doi.org/10.1007/s00376-016-6128-5.

    • Search Google Scholar
    • Export Citation
  • Zhu, L. J., J. D. Gong, L. P. Huang, D. H. Chen, Y. Jiang, and L. T. Deng, 2007: Three-dimensional cloud initial field created and applied for GRAPES numerical weather prediction nowcasting (in Chinese). J. Appl. Meteor. Sci., 28, 3851.

    • Search Google Scholar
    • Export Citation
  • Zhuang, X., J. Min, S. Wang, K. Zhou, and Y. Cai, 2017: A blending method for storm-scale ensemble forecast and its application to Beijing extreme precipitation event on July 21, 2012. Chin. J. Atmos. Sci., 41, 3042, 37, 893911, https://doi.org/10.3878/j.issn.1006-9895.1605.15233.

    • Search Google Scholar
    • Export Citation
  • Zhuang, X., J. Min, L. Zhang, S. Wang, N. Wu, and H. Zhu, 2020: Insights into convective-scale predictability in East China: Error growth dynamics and associated impact on precipitation of warm-season convective events. Adv. Atmos. Sci., 37, 893911, https://doi.org/10.1007/s00376-020-9269-5.

    • Search Google Scholar
    • Export Citation
  • Zhuang, X., M. Xue, J. Min, Z. Kang, N. Wu, and F. Kong, 2021: Error growth dynamics within convection-allowing ensemble forecasts over central U.S. regions for days of active convection. Mon. Wea. Rev., 149, 959977, https://doi.org/10.1175/MWR-D-20-0329.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 192 192 12
Full Text Views 56 56 3
PDF Downloads 88 88 3