• Aliu, I. R., 2020: Energy efficiency in postpaid-prepaid metered homes: Analyzing effects of socio-economic, housing, and metering factors in Lagos, Nigeria. Energy Effic., 13, 853869, https://doi.org/10.1007/s12053-020-09850-y.

    • Search Google Scholar
    • Export Citation
  • Argüeso, D., A. Di Luca, and J. P. Evans, 2016: Precipitation over urban areas in the western Maritime Continent using a convection-permitting model. Climate Dyn., 47, 11431159, https://doi.org/10.1007/s00382-015-2893-6.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., Y.-H. Kim, J.-J. Kim, and J.-Y. Han, 2007: Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol., 89, 7381, https://doi.org/10.1007/s00704-006-0254-4.

    • Search Google Scholar
    • Export Citation
  • Bassett, R., P. J. Young, G. S. Blair, F. Samreen, and W. Simm, 2020: The megacity Lagos and three decades of urban heat island growth. J. Appl. Meteor. Climatol., 59, 20412055, https://doi.org/10.1175/JAMC-D-20-0059.1.

    • Search Google Scholar
    • Export Citation
  • Burian, S. J., and J. M. Shepherd, 2005: Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Processes, 19, 10891103, https://doi.org/10.1002/hyp.5647.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1981: Midwestern cloud, sunshine and temperature trends since 1901: Possible evidence of jet contrail effects. J. Appl. Meteor. Climatol., 20, 496508, https://doi.org/10.1175/1520-0450(1981)020<0496:MCSATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Felice, 1998: Evidence of two regimes of easterly waves over West Africa and tropical Atlantic. Geophys. Res. Lett., 25, 28052808, https://doi.org/10.1029/98GL02152.

    • Search Google Scholar
    • Export Citation
  • Doan, Q.-V., and H. Kusaka, 2016: Numerical study on regional climate change due to the rapid urbanization of greater Ho Chi Minh City’s metropolitan area over the past 20 years. Int. J. Climatol., 36, 36333650, https://doi.org/10.1002/joc.4582.

    • Search Google Scholar
    • Export Citation
  • Doan, Q.-V., A. Dipankar, A. Simón-Moral, C. Sanchez, V. Prasanna, M. Roth, and X.-Y. Huang, 2021: Urban-induced modifications to the diurnal cycle of rainfall over a tropical city. Quart. J. Roy. Meteor. Soc., 147, 11891201, https://doi.org/10.1002/qj.3966.

    • Search Google Scholar
    • Export Citation
  • Doan, V. Q., H. Kusaka, and T. M. Nguyen, 2019: Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustainable Cities Soc., 47, 101479, https://doi.org/10.1016/j.scs.2019.101479.

    • Search Google Scholar
    • Export Citation
  • Ezema, I. C., A. O. Olotuah, and O. I. Fagbenle, 2016: Evaluation of energy use in public housing in Lagos, Nigeria: Prospects for renewable energy sources. Int. J. Renewable Energy Dev., 5, 1524, https://doi.org/10.14710/ijred.5.1.15-24.

    • Search Google Scholar
    • Export Citation
  • Faisal Koko, A., W. Yue, G. Abdullahi Abubakar, R. Hamed, and A. A. Noman Alabsi, 2021: Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomatics Nat. Hazards Risk, 12, 631652, https://doi.org/10.1080/19475705.2021.1887940.

    • Search Google Scholar
    • Export Citation
  • Freitag, B. M., U. S. Nair, and D. Niyogi, 2018: Urban modification of convection and rainfall in complex terrain. Geophys. Res. Lett., 45, 25072515, https://doi.org/10.1002/2017GL076834.

    • Search Google Scholar
    • Export Citation
  • Gero, A. F., and A. J. Pitman, 2006: The impact of land cover change on a simulated storm event in the Sydney basin. J. Appl. Meteor. Climatol., 45, 283300, https://doi.org/10.1175/JAM2337.1.

    • Search Google Scholar
    • Export Citation
  • Golroudbary, V. R., Y. Zeng, C. M. Mannaerts, and Z. B. Su, 2017: Detecting the effect of urban land use on extreme precipitation in the Netherlands. Wea. Climate Extremes, 17, 3646, https://doi.org/10.1016/j.wace.2017.07.003.

    • Search Google Scholar
    • Export Citation
  • Grady Dixon, P., and T. L. Mote, 2003: Patterns and causes of Atlanta’s urban heat island-initiated precipitation. J. Appl. Meteor. Climatol., 42, 12731284, https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gunwani, P., and M. Mohan, 2017: Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmos. Res., 194, 4365, https://doi.org/10.1016/j.atmosres.2017.04.026.

    • Search Google Scholar
    • Export Citation
  • Hamdi, R., D. Degrauwe, and P. Termonia, 2012: Coupling the Town Energy Balance (TEB) scheme to an operational limited-area NWP model: Evaluation for a highly urbanized area in Belgium. Wea. Forecasting, 27, 323344, https://doi.org/10.1175/WAF-D-11-00064.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hoornweg, D., and K. Pope, 2017: Population predictions for the world’s largest cities in the 21st century. Environ. Urban., 29, 195216, https://doi.org/10.1177/0956247816663557.

    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1921: Thunderstorm-breeding spots. Mon. Wea. Rev., 49, 193194, https://doi.org/10.1175/1520-0493(1921)49<193a:TS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2010: AMMA-Model Intercomparison Project. Bull. Amer. Meteor. Soc., 91, 95104, https://doi.org/10.1175/2009BAMS2791.1.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and S. A. Changnon Jr., 1972: Climatological assessment of urban effects on precipitation as St. Louis. J. Appl. Meteor. Climatol., 11, 823842, https://doi.org/10.1175/1520-0450(1972)011<0823:CAOUEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2023: AR6 Synthesis Report: Climate Change 2023. Cambridge University Press, in press.

  • Jee, J.-B., and S. Kim, 2017: Sensitivity study on high-resolution WRF precipitation forecast for a heavy rainfall event. Atmosphere, 8, 96, https://doi.org/10.3390/atmos8060096.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang, 2007: Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate, 20, 22992306, https://doi.org/10.1175/JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Kimura, H. Hirakuchi, and M. Mizutori, 2000: The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteor. Soc. Japan, 78, 405420, https://doi.org/10.2151/jmsj1965.78.4_405.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., K. Nawata, A. Suzuki-Parker, Y. Takane, and N. Furuhashi, 2014: Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J. Appl. Meteor. Climatol., 53, 824839, https://doi.org/10.1175/JAMC-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., A. Nishi, M. Mizunari, and H. Yokoyama, 2019: Urban impacts on the spatiotemporal pattern of short-duration convective precipitation in a coastal city adjacent to a mountain range. Quart. J. Roy. Meteor. Soc., 145, 22372254, https://doi.org/10.1002/qj.3555.

    • Search Google Scholar
    • Export Citation
  • Li, W., and Coauthors, 2019: Annual precipitation and daily extreme precipitation distribution: Possible trends from 1960 to 2010 in urban areas of China. Geomatics Nat. Hazards Risk, 10, 16941711, https://doi.org/10.1080/19475705.2019.1609604.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2020: Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett., 47, e2020GL088758, https://doi.org/10.1029/2020GL088758.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, C.-Y., W.-C. Chen, P.-L. Chang, and Y.-F. Sheng, 2011: Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteor. Climatol., 50, 339353, https://doi.org/10.1175/2010JAMC2504.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and D. Niyogi, 2019: Meta-analysis of urbanization impact on rainfall modification. Sci. Rep., 9, 7301, https://doi.org/10.1038/s41598-019-42494-2.

    • Search Google Scholar
    • Export Citation
  • Luong, T. M., H. P. Dasari, and I. Hoteit, 2020: Impact of urbanization on the simulation of extreme rainfall in the City of Jeddah, Saudi Arabia. J. Appl. Meteor. Climatol., 59, 953971, https://doi.org/10.1175/JAMC-D-19-0257.1.

    • Search Google Scholar
    • Export Citation
  • Mitra, C., J. M. Shepherd, and T. Jordan, 2012: On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. Int. J. Climatol., 32, 14431454, https://doi.org/10.1002/joc.2366.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mote, T. L., M. C. Lacke, and J. M. Shepherd, 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, https://doi.org/10.1029/2007GL031903.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, https://doi.org/10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Ojeh, V. N., A. A. Balogun, and A. A. Okhimamhe, 2016: Urban-rural temperature differences in Lagos. Climate, 4, 29, https://doi.org/10.3390/cli4020029.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 546 pp.

  • Ooi, M. C. G., A. Chan, K. Subramaniam, K. I. Morris, and M. Y. Oozeer, 2017: Interaction of urban heating and local winds during the calm intermonsoon seasons in the tropics. J. Geophys. Res. Atmos., 122, 11 49911 523, https://doi.org/10.1002/2017JD026690.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 25972600, https://doi.org/10.1029/2001GL012990.

    • Search Google Scholar
    • Export Citation
  • Pathirana, A., H. B. Denekew, W. Veerbeek, C. Zevenbergen, and A. T. Banda, 2014: Impact of urban growth-driven landuse change on microclimate and extreme precipitation—A sensitivity study. Atmos. Res, 138, 5972, https://doi.org/10.1016/j.atmosres.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., and Coauthors, 2022: Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions. Adv. Atmos. Sci., 39, 819860, https://doi.org/10.1007/s00376-021-1371-9.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor. Climatol., 42, 716738, https://doi.org/10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., M. Georgescu, J. M. Milne, and M. A. Hart, 2015: Development of a national anthropogenic heating database with an extrapolation for international cities. Atmos. Environ., 118, 718, https://doi.org/10.1016/j.atmosenv.2015.07.016.

    • Search Google Scholar
    • Export Citation
  • Shastri, H., S. Paul, S. Ghosh, and S. Karmakar, 2015: Impacts of urbanization on Indian summer monsoon rainfall extremes. J. Geophys. Res. Atmos., 120, 496516, https://doi.org/10.1002/2014JD022061.

    • Search Google Scholar
    • Export Citation
  • Shem, W., and M. Shepherd, 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189, https://doi.org/10.1016/j.atmosres.2008.09.013.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, https://doi.org/10.1007/s10546-010-9583-z.

    • Search Google Scholar
    • Export Citation
  • Simón-Moral, A., A. Dipankar, Q.-V. Doan, C. Sanchez, M. Roth, E. Becker, and X.-Y. Huang, 2021: Urban intensification of convective rainfall over the Singapore–Johor Bahru region. Quart. J. Roy. Meteor. Soc., 147, 36653680, https://doi.org/10.1002/qj.4147.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Song, H.-J., and B.-J. Sohn, 2018: An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 54, 225236, https://doi.org/10.1007/s13143-018-0006-2.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., I. Diallo, and J. S. Pal, 2013: West African monsoon in state-of-the-science regional climate models. Climate Variability: Regional and Thematic Patterns, A. Tarhule, Ed., IntechOpen, 3–36, https://doi.org/10.5772/55140.

  • Tewari, M., F. Chen, J. Dudhia, P. Ray, S. Miao, E. Nikolopoulos, and L. Treinish, 2021: Understanding the sensitivity of WRF hindcast of Beijing extreme rainfall of 21 July 2012 to microphysics and model initial time. Atmos. Res., 271, 106085, https://doi.org/10.1016/j.atmosres.2022.106085.

    • Search Google Scholar
    • Export Citation
  • Thielen, J., W. Wobrock, A. Gadian, P. G. Mestayer, and J.-D. Creutin, 2000: The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the meso-γ-scale. Atmos. Res., 54, 1539, https://doi.org/10.1016/S0169-8095(00)00041-7.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • United Nations, 2015: Sustainable Development Goals. Department of Economic and Social Affairs, https://sdgs.un.org/goals.

  • United Nations, 2018: 2018 revision of world urbanization prospects. Department of Economic and Social Affairs, https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html.

  • Wang, D., P. Jiang, G. Wang, and D. Wang, 2015: Urban extent enhances extreme precipitation over the Pearl River Delta, China. Atmos. Sci. Lett., 16, 310317, https://doi.org/10.1002/asl2.559.

    • Search Google Scholar
    • Export Citation
  • Wang, J., F. Chen, Q.-V. Doan, and Y. Xu, 2021: Exploring the effect of urbanization on hourly extreme rainfall over Yangtze River Delta of China. Urban Climate, 36, 100781, https://doi.org/10.1016/j.uclim.2021.100781.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1995: Summertime cloud-to-ground lightning activity around major midwestern urban areas. J. Appl. Meteor. Climatol., 34, 16331642, https://doi.org/10.1175/1520-0450-34.7.1633.

    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2019: NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1. NOAA National Centers for Environmental Information, accessed 14 April 2022, https://doi.org/10.25921/w9va-q159.

  • Yonetani, T., 1982: Increase in number of days with heavy precipitation in Tokyo urban area. J. Appl. Meteor. Climatol., 21, 14661471, https://doi.org/10.1175/1520-0450(1982)021<1466:IINODW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. L., F. Chen, S. G. Miao, Q. C. Li, X. A. Xia, and C. Y. Xuan, 2009: Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res., 114, D02116, https://doi.org/10.1029/2008JD010328.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2019: Regional patterns of extreme precipitation and urban signatures in metropolitan areas. J. Geophys. Res. Atmos., 124, 641663, https://doi.org/10.1029/2018JD029718.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and X.-Q. Yang, 2015: Ensemble simulations of the urban effect on a summer rainfall event in the Great Beijing metropolitan area. Atmos. Res., 153, 318334, https://doi.org/10.1016/j.atmosres.2014.09.005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 386 386 42
Full Text Views 97 97 6
PDF Downloads 118 118 9

Tracking Urban Footprint on Extreme Precipitation in an African Megacity

Quang-Van DoanaCenter for Computational Science, University of Tsukuba, Japan

Search for other papers by Quang-Van Doan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2794-5309
,
Shun KobayashibGraduate School of Life and Environmental Science, University of Tsukuba, Japan

Search for other papers by Shun Kobayashi in
Current site
Google Scholar
PubMed
Close
,
Hiroyuki KusakaaCenter for Computational Science, University of Tsukuba, Japan

Search for other papers by Hiroyuki Kusaka in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0326-7179
,
Fei ChencResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Fei Chen in
Current site
Google Scholar
PubMed
Close
,
Cenlin HecResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Cenlin He in
Current site
Google Scholar
PubMed
Close
, and
Dev NiyogidJackson School of Geosciences, The University of Texas at Austin, Austin, Texas
eCockrell School of Engineering, The University of Texas at Austin, Austin, Texas

Search for other papers by Dev Niyogi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study contributes to the body of current knowledge about the urban effect on extreme precipitation (EP) by investigating the city–EP interaction over Lagos, Nigeria. This is a unique, first-time study that adds a “missing piece” of this information about the African continent to the comprehensive global urban precipitation “puzzle.” The convection-permitting Weather Research and Forecasting (WRF) Model is employed within an ensemble simulation framework using combinations of different physical schemes and boundary/initial conditions to detect the urban signal on an extreme rainfall event that occurred on 30 May 2006. WRF simulations are verified against satellite-estimated and in situ observations, and the results from the best-performing ensemble members are used for analysis. The results show that the control simulation with urban representation generated 20%–30% more rainfall over the urban area than the nonurban sensitivity simulation, in which the city is replaced by forest. Physical mechanisms behind the differences were revealed. We found that the urbanization in Lagos reduced evapotranspiration, resulting in the increase of sensible heating (by 75 W m−2). This further enhances the urban heat-island effect (+1.5 K of air surface temperature), facilitating horizontal convergence and boosting daytime sea breeze. As a result, more moisture is transported from the southern sea area to inland areas; the moisture then converges over Lagos city, creating favorable conditions for enhancing convection and extreme-rainfall-generating processes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Quang-Van Doan, doan.van.gb@u.tsukuba.ac.jp

Abstract

This study contributes to the body of current knowledge about the urban effect on extreme precipitation (EP) by investigating the city–EP interaction over Lagos, Nigeria. This is a unique, first-time study that adds a “missing piece” of this information about the African continent to the comprehensive global urban precipitation “puzzle.” The convection-permitting Weather Research and Forecasting (WRF) Model is employed within an ensemble simulation framework using combinations of different physical schemes and boundary/initial conditions to detect the urban signal on an extreme rainfall event that occurred on 30 May 2006. WRF simulations are verified against satellite-estimated and in situ observations, and the results from the best-performing ensemble members are used for analysis. The results show that the control simulation with urban representation generated 20%–30% more rainfall over the urban area than the nonurban sensitivity simulation, in which the city is replaced by forest. Physical mechanisms behind the differences were revealed. We found that the urbanization in Lagos reduced evapotranspiration, resulting in the increase of sensible heating (by 75 W m−2). This further enhances the urban heat-island effect (+1.5 K of air surface temperature), facilitating horizontal convergence and boosting daytime sea breeze. As a result, more moisture is transported from the southern sea area to inland areas; the moisture then converges over Lagos city, creating favorable conditions for enhancing convection and extreme-rainfall-generating processes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Quang-Van Doan, doan.van.gb@u.tsukuba.ac.jp
Save