• Abel, S. J., and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, https://doi.org/10.1002/qj.1949.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., C. Klepp, K. Fennig, S. Bakan, H. Grassl, and J. Schulz, 2011: Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteor. Climatol., 50, 379398, https://doi.org/10.1175/2010JAMC2341.1.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Riehl, F. Ostapoff, and V. Wagner, 1973: Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon. Wea. Rev., 101, 101111, https://doi.org/10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Schmidt, and F. Ostapoff, 1974: The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean. Bound.-Layer Meteor., 6, 129150, https://doi.org/10.1007/BF00232480.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., P. Kollias, R. Dhillon, K. Lamer, M. Khairoutdinov, and D. Watters, 2020: Mind the gap—Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars. Atmos. Meas. Tech., 13, 48654883, https://doi.org/10.5194/amt-13-4865-2020.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Y. Song, 2020: A new estimate for oceanic precipitation amount and distribution using complementary precipitation observations from space and comparison with GPCP. Environ. Res. Lett., 15, 124042, https://doi.org/10.1088/1748-9326/abc6d1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2016: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, https://doi.org/10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., E. Augstein, and H. Riehl, 1974: On the low-level wind structure in the Atlantic trade. Quart. J. Roy. Meteor. Soc., 100, 109121, https://doi.org/10.1002/qj.49710042310.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918, https://doi.org/10.1256/qj.03.187.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • Duncan, D. I., and C. D. Kummerow, 2016: A 1DVAR retrieval applied to GMI: Algorithm description, validation, and sensitivities. J. Geophys. Res. Atmos., 121, 74157429, https://doi.org/10.1002/2016JD024808.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Z. S. Haddad, A. Kitiyakara, and F. K. Li, 1998: Effects of nonuniform beam filling on rain retrieval for the TRMM precipitation radar. J. Atmos. Oceanic Technol., 15, 635646, https://doi.org/10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., E. Im, F. K. Li, R. Girard, and K. S. Pak, 2001: Surface clutter due to antenna sidelobes for spaceborne atmospheric radar. IEEE Trans. Geosci. Remote Sens., 39, 19161921, https://doi.org/10.1109/36.951082.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., D. Wang, M. J. Bartholomew, M. P. Jensen, D. B. Mechem, J. C. Hardin, and R. Wood, 2019: Midlatitude oceanic cloud and precipitation properties as sampled by the ARM Eastern North Atlantic observatory. J. Geophys. Res. Atmos., 124, 47414760, https://doi.org/10.1029/2018JD029667.

    • Search Google Scholar
    • Export Citation
  • Graves, C. E., 1993: A model for the beam-filling effect associated with the microwave retrieval of rain. J. Atmos. Oceanic Technol., 10, 514, https://doi.org/10.1175/1520-0426(1993)010<0005:AMFTBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. Mclaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. dissertation, Colorado State University, 289 pp.

  • Haynes, J. M., R. T. Marchand, Z. Lou, A. Bodas-Salcedo, and G. L. Stephens, 2007: A multipurpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231728, https://doi.org/10.1175/BAMS-88-11-1723.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, https://doi.org/10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., S. C. van den Heever, C. M. Naud, S. M. Saleeby, and D. J. Posselt, 2013: Sensitivity of warm frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci., 70, 17681783, https://doi.org/10.1175/JAS-D-12-0170.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, https://doi.org/10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111, D01202, https://doi.org/10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Jing, X., and K. Suzuki, 2018: The impact of process-based warm rain constraints on the aerosol indirect effect. Geophys. Res. Lett., 45, 10 72910 737, https://doi.org/10.1029/2018GL079956.

    • Search Google Scholar
    • Export Citation
  • Kalmus, P., and M. Lebsock, 2017: Correcting biased evaporation in CloudSat warm rain. IEEE Trans. Geosci. Remote Sens., 55, 62076217, https://doi.org/10.1109/TGRS.2017.2722469.

    • Search Google Scholar
    • Export Citation
  • Kazumori, M., and S. J. English, 2015: Use of the ocean surface wind direction signal in microwave radiance assimilation. Quart. J. Roy. Meteor. Soc., 141, 13541375, https://doi.org/10.1002/qj.2445.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., E. Graham, T. Smyth, and M. Gill, 2021: Assessing the impact of light/shallow precipitation retrievals from satellite-based observations using surface radar and micro rain radar observations. Remote Sens., 13, 1708, https://doi.org/10.3390/rs13091708.

    • Search Google Scholar
    • Export Citation
  • Klepp, C., and Coauthors, 2018: OceanRAIN, a new in-situ shipboard global ocean surface-reference dataset of all water cycle components. Sci. Data, 5, 180122, https://doi.org/10.1038/sdata.2018.122.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972, https://doi.org/10.1175/2009JAS3071.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., T. Iguchi, M. Kojima, L. Liao, T. Masaki, H. Hanado, R. Meneghini, and R. Oki, 2016: A statistical method for reducing sidelobe clutter for the Ku-band precipitation radar on board the GPM Core Observatory. J. Atmos. Oceanic Technol., 33, 14131428, https://doi.org/10.1175/JTECH-D-15-0202.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, https://doi.org/10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., M. D. Lebsock, S. Tanelli, K. Suzuki, H. Yashiro, and Y. Miyamoto, 2015: Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model. Atmos. Meas. Tech., 8, 34933517, https://doi.org/10.5194/amt-8-3493-2015.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Tokay, 2020: Characteristics of DSD bulk parameters: Implication for radar rain retrieval. Atmosphere, 11, 670, https://doi.org/10.3390/atmos11060670.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, https://doi.org/10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor. Climatol., 39, 20532070, https://doi.org/10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377445, https://doi.org/10.1002/andp.19083300302.

    • Search Google Scholar
    • Export Citation
  • Nakamura, K., 1991: Biases of rain retrieval algorithms for space- borne radar caused by nonuniformity of rain. J. Atmos. Oceanic Technol., 8, 363373, https://doi.org/10.1175/1520-0426(1991)008<0363:BORRAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 716 pp., https://doi.org/10.17226/24938.

  • Nelson, E. S., and T. S. L’Ecuyer, 2018: Global character of latent heat release in oceanic warm rain systems. J. Geophys. Res. Atmos., 123, 47974817, https://doi.org/10.1002/2017JD027844.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., K. Emanuel, H. Masunaga, and T. L’Ecuyer, 2017: Implications of warm rain in shallow cumulus and congestus clouds for large-scale circulations. Surv. Geophys., 38, 12571282, https://doi.org/10.1007/s10712-017-9429-z.

    • Search Google Scholar
    • Export Citation
  • Ojo, J. S., D. B. Akoma, and E. O. Olurotimi, 2021: Dynamical evolution of vertical profile of rain structures observed using ground-based radar over a tropical station. Heliyon, 7, e06888, https://doi.org/10.1016/j.heliyon.2021.e06888.

    • Search Google Scholar
    • Export Citation
  • Porcacchia, L., P.-E. Kirstetter, V. Maggioni, and S. Tanelli, 2019: Investigating the GPM dual-frequency precipitation radar signatures of low-level precipitation enhancement. Quart. J. Roy. Meteor. Soc., 145, 31613174, https://doi.org/10.1002/qj.3611.

    • Search Google Scholar
    • Export Citation
  • Protat, A., C. Klepp, V. Louf, W. A. Petersen, S. P. Alexander, A. Barros, J. Leinonen, and G. G. Mace, 2019: The latitudinal variability of oceanic rainfall properties and its implication for satellite retrievals: 1. Drop size distribution properties. J. Geophys. Res. Atmos., 124, 13 29113 311, https://doi.org/10.1029/2019JD031010.

    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., M. Lebsock, and T. L’Ecuyer, 2013: Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat. Environ. Res. Lett., 8, 014027, https://doi.org/10.1088/1748-9326/8/1/014027.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 240 pp.

  • Saleeby, S. M., and W. R. Cotton, 2004: A large droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor. Climatol., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922, https://doi.org/10.1175/2008JAMC1989.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., S. R. Herbener, S. C. van den Heever, and T. L’Ecuyer, 2015: Impacts of cloud droplet-nucleating aerosols on shallow tropical convection. J. Atmos. Sci., 72, 13691385, https://doi.org/10.1175/JAS-D-14-0153.1.

    • Search Google Scholar
    • Export Citation
  • Schulte, R. M., and C. D. Kummerow, 2022: Can DSD assumptions explain the differences in satellite estimates of warm rain? J. Atmos. Ocean. Technol., 39, 1889–1901, https://doi.org/10.1175/JTECH-D-22-0036.1.

    • Search Google Scholar
    • Export Citation
  • Schulte, R. M., C. D. Kummerow, C. Klepp, and G. G. Mace, 2022: How accurately can warm rain realistically be retrieved with satellite sensors? Part I: DSD uncertainties. J. Appl. Meteor. Climatol., 61, 10871105, https://doi.org/10.1175/JAMC-D-21-0158.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, R. Meneghini, J. Awaka, T. Kubota, T. Masaki, and N. Takahashi, 2021: The precipitation rate retrieval algorithms for the GPM dual-frequency precipitation radar. J. Meteor. Soc. Japan, 99, 205237, https://doi.org/10.2151/jmsj.2021-011.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., R. Meneghini, A. E. Emory, and M. R. Schwaller, 2015: Reduction of nonuniform beamfilling effects by multiple constraints: A simulation study. J. Atmos. Oceanic Technol., 32, 21142124, https://doi.org/10.1175/JTECH-D-15-0021.1.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stavros, E. N. , and Coauthors, 2021: ESO mission data processing study—Summary of NASA program offices and ESO missions requirements, constraints, recommendations, and opportunities. NASA Workshop Rep. 1, 37 pp., http://hdl.handle.net/2014/53042.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891, https://doi.org/10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, N., H. Hanado, and T. Iguchi, 2006: Estimation of path-integrated attenuation and its nonuniformity from TRMM/PR range profile data. IEEE Trans. Geosci. Remote Sens., 44, 32763283, https://doi.org/10.1109/TGRS.2006.876295.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, R. T. Marchand, and J. M. Haynes, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C. , and Coauthors, 2022: The NASA INCUS mission. 25th Conf. on Satellite Meteorology, Madison, WI, Amer. Meteor. Soc., 15.1, https://ams.confex.com/ams/CMM2022/meetingapp.cgi/Paper/406276.

  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor. Climatol., 39, 931944, https://doi.org/10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406, https://doi.org/10.1175/2007JAS2428.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., D. Lu, S. Duan, and J. Liu, 2004: Small-scale rain nonuniformity and its effect on evaluation of nonuniform beam-filling error for spaceborne radar rain measurement. J. Atmos. Oceanic Technol., 21, 1190–1197, https://doi.org/10.1175/1520-0426(2004)021<1190:SRNAIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 326 326 9
Full Text Views 134 134 6
PDF Downloads 162 162 9

How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part II: Horizontal and Vertical Heterogeneities

Richard M. SchulteaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Richard M. Schulte in
Current site
Google Scholar
PubMed
Close
,
Christian D. KummerowaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
,
Stephen M. SaleebyaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Stephen M. Saleeby in
Current site
Google Scholar
PubMed
Close
, and
Gerald G. MacebDepartment of Atmospheric Science, University of Utah, Salt Lake City, Utah

Search for other papers by Gerald G. Mace in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There are many sources of uncertainty in satellite precipitation retrievals of warm rain. In this paper, the second of a two-part study, we focus on uncertainties related to spatial heterogeneity and surface clutter. A cloud-resolving model simulation of warm, shallow clouds is used to simulate satellite observations from three theoretical satellite architectures—one similar to the Global Precipitation Measurement Core Observatory, one similar to CloudSat, and one similar to the planned Atmosphere Observing System (AOS). Rain rates are then retrieved using a common optimal estimation framework. For this case, retrieval biases due to nonuniform beamfilling are very large, with retrieved rain rates negatively (low) biased by as much as 40%–50% (depending on satellite architecture) at 5 km horizontal resolution. Surface clutter also acts to negatively bias retrieved rain rates. Combining all sources of uncertainty, the theoretical AOS satellite is found to outperform CloudSat in terms of retrieved surface rain rate, with a bias of −19% as compared with −28%, a reduced spread of retrieval errors, and an additional 17.5% of cases falling within desired uncertainty limits. The results speak to the need for additional high-resolution modeling simulations of warm rain so as to better characterize the uncertainties in satellite precipitation retrievals.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Schulte, rick.schulte@colostate.edu

Abstract

There are many sources of uncertainty in satellite precipitation retrievals of warm rain. In this paper, the second of a two-part study, we focus on uncertainties related to spatial heterogeneity and surface clutter. A cloud-resolving model simulation of warm, shallow clouds is used to simulate satellite observations from three theoretical satellite architectures—one similar to the Global Precipitation Measurement Core Observatory, one similar to CloudSat, and one similar to the planned Atmosphere Observing System (AOS). Rain rates are then retrieved using a common optimal estimation framework. For this case, retrieval biases due to nonuniform beamfilling are very large, with retrieved rain rates negatively (low) biased by as much as 40%–50% (depending on satellite architecture) at 5 km horizontal resolution. Surface clutter also acts to negatively bias retrieved rain rates. Combining all sources of uncertainty, the theoretical AOS satellite is found to outperform CloudSat in terms of retrieved surface rain rate, with a bias of −19% as compared with −28%, a reduced spread of retrieval errors, and an additional 17.5% of cases falling within desired uncertainty limits. The results speak to the need for additional high-resolution modeling simulations of warm rain so as to better characterize the uncertainties in satellite precipitation retrievals.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Schulte, rick.schulte@colostate.edu
Save