• Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA, 113, 11 77011 775, https://doi.org/10.1073/pnas.1607171113.

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., and Coauthors, 2014: Forecasting global atmospheric CO2. Atmos. Chem. Phys., 14, 11 95911 983, https://doi.org/10.5194/acp-14-11959-2014.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., J. J. DeLuisi, and C. N. Long, 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 23412358, https://doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina, 2005: An update on SURFRAD—The GCOS surface radiation budget network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, https://doi.org/10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation. J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115.

    • Search Google Scholar
    • Export Citation
  • Blanc, P., and Coauthors, 2014: Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy, 110, 561577, https://doi.org/10.1016/j.solener.2014.10.001.

    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2015: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA aerosol reanalysis. Atmos. Chem. Phys., 15, 57435760, https://doi.org/10.5194/acp-15-5743-2015.

    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Search Google Scholar
    • Export Citation
  • Byun, D., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev., 59, 5177, https://doi.org/10.1115/1.2128636.

    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2019: Cheyenne: HPE/SGI ICE XA System. NCAR Advanced Research Computing, https://doi.org/10.5065/D6RX99HX.

  • Copernicus, 2020: CAMS near-real-time global analysis and forecast daily data. ECMWF, accessed 3 August 2020, https://www.ecmwf.int/en/forecasts/dataset/cams-near-real-time-global-analysis-and-forecast-daily-data.

  • Crockett, J. L., and A. L. Westerling, 2018: Greater temperature and precipitation extremes intensify western U.S. droughts, wildfire severity, and Sierra Nevada tree mortality. J. Climate, 31, 341354, https://doi.org/10.1175/JCLI-D-17-0254.1.

    • Search Google Scholar
    • Export Citation
  • Dasari, H. P., S. Desamsetti, S. Langodan, R. Attada, R. K. Kunchala, Y. Viswanadhapalli, O. Knio, and I. Hoteit, 2019: High-resolution assessment of solar energy resources over the Arabian Peninsula. Appl. Energy, 248, 354371, https://doi.org/10.1016/j.apenergy.2019.04.105.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, 1999: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104, 31 33331 349, https://doi.org/10.1029/1999JD900923.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2019: Operational configurations of the ECMWF Integrated Forecasting System (IFS). ECMWF, accessed 3 August 2020, https://www.ecmwf.int/en/forecasts/documentation-and-support.

  • Ek, M. B., 2003: Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Engelen, R., 2019: Implementation of IFS cycle 46r1—Copernicus Services. ECMWF Confluence Wiki, accessed 3 August 2020, https://confluence.ecmwf.int/display/COPSRV/Implementation+of+IFS+cycle+46r1.

  • Engelen, R., J. Flemming, A. Inness, and M. Suttie, 2009: Assimilation of IASI observations in the context of the GEMS and MACC projects. ECMWF/EUMETSAT NWP-SAF Workshop on the assimilation of IASI in NWP, Shinfield Park, Reading, ECMWF, 123–130, https://www.ecmwf.int/node/9294.

  • Fast, J. D., W. I. Gustafson, R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res., 111, D21305, https://doi.org/10.1029/2005JD006721.

    • Search Google Scholar
    • Export Citation
  • Flemming, J., and Coauthors, 2015: Tropospheric chemistry in the integrated forecasting system of ECMWF. Geosci. Model Dev., 8, 9751003, https://doi.org/10.5194/gmd-8-975-2015.

    • Search Google Scholar
    • Export Citation
  • Flemming, J., V.-H. Peuch, and L. Jones, 2017: Ten years of forecasting atmospheric composition at ECMWF. ECMWF Newsletter, No. 152, ECMWF, Reading, United Kingdom, 5–6, https://www.ecmwf.int/en/newsletter/152/news/ten-years-forecasting-atmospheric-composition-ecmwf#top.

  • Fu, D., M. Liu, D. Yang, H. Che, and X. Xia, 2022: Influences of atmospheric reanalysis on the accuracy of clear-sky irradiance estimates: Comparing MERRA-2 and CAMS. Atmos. Environ., 277, 119080, https://doi.org/10.1016/j.atmosenv.2022.119080.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975, https://doi.org/10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., 2012: Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Sol. Energy, 86, 35443553, https://doi.org/10.1016/j.solener.2012.01.013.

    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., and D. Yang, 2020: Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos. Environ., 225, 117216, https://doi.org/10.1016/j.atmosenv.2019.117216.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2018: Building the Sun4Cast system: Improvements in solar power forecasting. Bull. Amer. Meteor. Soc., 99, 121136, https://doi.org/10.1175/BAMS-D-16-0221.1.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2020: Combining artificial intelligence with physics-based methods for probabilistic renewable energy forecasting. Energies, 13, 1979, https://doi.org/10.3390/en13081979.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., J. J. DeLuisi, and D. R. Matt, 1996: The NOAA Integrated Surface Irradiance Study (ISIS)—A new surface radiation monitoring program. Bull. Amer. Meteor. Soc., 77, 28572864, https://doi.org/10.1175/1520-0477(1996)077<2857:TNISIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. Bozzo, 2018: A flexible and efficient radiation scheme for the ECMWF model. J. Adv. Model. Earth Syst., 10, 19902008, https://doi.org/10.1029/2018MS001364.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66 (1), 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Huijnen, V., and Coauthors, 2019: Quantifying uncertainties due to chemistry modelling—Evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). Geosci. Model Dev., 12, 17251752, https://doi.org/10.5194/gmd-12-1725-2019.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Inness, A., and Coauthors, 2019: The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys., 19, 35153556, https://doi.org/10.5194/acp-19-3515-2019.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and Coauthors, 2016a: WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc., 97, 12491264, https://doi.org/10.1175/BAMS-D-14-00279.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., S. Alessandrini, S. E. Haupt, A. Deng, B. Kosovic, J. A. Lee, and L. Delle Monache, 2016b: The role of unresolved clouds on short-range global horizontal irradiance predictability. Mon. Wea. Rev., 144, 30993107, https://doi.org/10.1175/MWR-D-16-0104.1.

    • Search Google Scholar
    • Export Citation
  • Juliano, T. W., and Coauthors, 2022: Smoke from 2020 United States wildfires responsible for substantial solar energy forecast errors. Environ. Res. Lett., 17, 034010, https://doi.org/10.1088/1748-9326/ac5143.

    • Search Google Scholar
    • Export Citation
  • Lee, J. A., S. E. Haupt, P. A. Jiménez, M. A. Rogers, S. D. Miller, and T. C. McCandless, 2017: Solar irradiance nowcasting case studies near Sacramento. J. Appl. Meteor. Climatol., 56, 85108, https://doi.org/10.1175/JAMC-D-16-0183.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J. A., C. A. Gueymard, and P. A. Jiménez, 2021: Performance of aerosol optical depth forecasts over the Middle East: Multi-model analysis and validation. ESS Open Archive, https://doi.org/10.1002/essoar.10506487.1.

  • Lee, J. A., P. A. Jiménez, J. Dudhia, and Y.-M. Saint-Drenan, 2022: WRF-Solar AOD550 & clear-sky irradiance forecasts & verifying observations over CONUS. NCAR, accessed 2 August 2022, https://doi.org/10.5065/v94m-y402.

  • Lee, P., and Coauthors, 2017: NAQFC developmental forecast guidance for fine particulate matter (PM2.5). Wea. Forecasting, 32, 343360, https://doi.org/10.1175/WAF-D-15-0163.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Y. Shi, 2008: An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J., 2, 2337, https://doi.org/10.2174/1874282300802010023.

    • Search Google Scholar
    • Export Citation
  • Marchand, M., Y.-M. Saint-Drenan, L. Saboret, E. Wey, and L. Wald, 2020: Performance of CAMS radiation service and HelioClim-3 databases of solar radiation at surface: Evaluating the spatial variation in Germany. Adv. Sci. Res., 17, 143152, https://doi.org/10.5194/asr-17-143-2020.

    • Search Google Scholar
    • Export Citation
  • McCandless, T., and P. A. Jiménez, 2020: Examining the potential of a random forest derived cloud mask from GOES-R satellites to improve solar irradiance forecasting. Energies, 13, 1671, https://doi.org/10.3390/en13071671.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res., 114, D06206, https://doi.org/10.1029/2008JD011235.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Oumbe, A., Z. Qu, P. Blanc, H. Bru, M. Lefèvre, and L. Wald, 2012: Modeling circumsolar irradiance to adjust beam irradiances from radiative transfer models to measurements. EMS Annual Meeting 2012, Lodz, Poland, PSL, https://hal-mines-paristech.archives-ouvertes.fr/hal-00741624.

  • Powers, J. G., and Coauthors, 2017: The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Search Google Scholar
    • Export Citation
  • Qin, Y., T. R. McVicar, J. Huang, S. West, and A. D. L. Steven, 2021: Application of small angle approximation in circumsolar irradiance modelling. Sol. Energy Adv., 1, 100001, https://doi.org/10.1016/j.seja.2021.100001.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Search Google Scholar
    • Export Citation
  • Rémy, S., and Coauthors, 2019: Description and evaluation of the tropospheric aerosol scheme in the European Centre for medium-range weather forecasts (ECMWF) integrated forecasting system (IFS-AER, cycle 45R1). Geosci. Model Dev., 12, 46274659, https://doi.org/10.5194/gmd-12-4627-2019.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System-Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Memo. NASA/TM-2008-104606, Vol. 27, 97 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.

  • Ruiz-Arias, J. A., and C. A. Gueymard, 2018: Worldwide inter-comparison of clear-sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface. Sol. Energy, 168, 1029, https://doi.org/10.1016/j.solener.2018.02.008.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, C. A. Gueymard, and D. Pozo-Vázquez, 2013: Assessment of the level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling. Atmos. Chem. Phys., 13, 675692, https://doi.org/10.5194/acp-13-675-2013.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, and C. A. Gueymard, 2014: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model. Geosci. Model Dev., 7, 11591174, https://doi.org/10.5194/gmd-7-1159-2014.

    • Search Google Scholar
    • Export Citation
  • Schuster, G. L., O. Dubovik, and B. N. Holben, 2006: Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res., 111, D07207, https://doi.org/10.1029/2005JD006328.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, https://doi.org/10.1029/97JD01864.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Verbois, H., R. Huva, A. Rusydi, and W. Walsh, 2018: Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning. Sol. Energy, 162, 265277, https://doi.org/10.1016/j.solener.2018.01.007.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., M. Sengupta, Y. Liu, H. Long, Q. Min, W. Liu, and A. Habte, 2020: A physics-based DNI model assessing all-sky circumsolar radiation. iScience, 23, 100893, https://doi.org/10.1016/j.isci.2020.100893.

    • Search Google Scholar
    • Export Citation
  • Yang, J., J.-H. Kim, P. A. Jiménez, M. Sengupta, J. Dudhia, Y. Xie, A. Golnas, and R. Giering, 2021: An efficient method to identify uncertainties of WRF-Solar variables in forecasting solar irradiance using a tangent linear sensitivity analysis. Sol. Energy, 220, 509522, https://doi.org/10.1016/j.solener.2021.03.044.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., B. Kravitz, P. J. Rasch, S.-Y. S. Wang, R. R. Gillies, and L. Hipps, 2015: Extreme fire season in California: A glimpse into the future? [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S5S9, https://doi.org/10.1175/BAMS-D-15-00114.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 385 385 19
Full Text Views 110 110 6
PDF Downloads 132 132 11

Impacts of the Aerosol Representation in WRF-Solar Clear-Sky Irradiance Forecasts over CONUS

Jared A. LeeaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jared A. Lee in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8841-0738
,
Pedro A. JiménezaResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Pedro A. Jiménez in
Current site
Google Scholar
PubMed
Close
,
Jimy DudhiabMesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
, and
Yves-Marie Saint-DrenancMINES ParisTech, Paris, France

Search for other papers by Yves-Marie Saint-Drenan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Aerosol optical depth (AOD) is a primary source of solar irradiance forecast error in clear-sky conditions. Improving the accuracy of AOD in NWP models like WRF will thus reduce error in both direct normal irradiance (DNI) and global horizontal irradiance (GHI), which should improve solar power forecast errors, at least in cloud-free conditions. In this study clear-sky GHI and DNI was analyzed from four configurations of the WRF-Solar model with different aerosol representations: 1) the default Tegen climatology, 2) imposing AOD forecasts from the GEOS-5 model, 3) imposing AOD forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) model, and 4) the Thompson–Eidhammer aerosol-aware water/ice-friendly aerosol climatology. More than 8 months of these 15-min output forecasts are compared with high-quality irradiance observations at NOAA SURFRAD and Solar Radiation (SOLRAD) stations located across CONUS. In general, WRF-Solar with GEOS-5 AOD had the lowest errors in clear-sky DNI, while WRF-Solar with CAMS AOD had the highest errors, higher even than the two aerosol climatologies, which is consistent with validation of the four AOD550 datasets against AERONET stations. For clear-sky GHI, the statistics differed little between the four models, as expected because of the lesser sensitivity of GHI to aerosol loading. Hourly average clear-sky DNI and GHI were also analyzed, and they were additionally compared with CAMS model output directly. CAMS irradiance performed competitively with the best WRF-Solar configuration (with GEOS-5 AOD). The markedly different performance of CAMS versus WRF-Solar with CAMS AOD indicates that CAMS is apparently less sensitive to AOD550 than WRF-Solar is.

Significance Statement

Particles in the atmosphere called aerosols, which can include dust, smoke, sea salt, sulfates, black carbon, and organic carbon, absorb and scatter incoming sunlight. Improving the representation of aerosols in numerical weather prediction models reduces forecast errors in solar irradiance at ground level, particularly direct normal irradiance, during cloud-free conditions. This in turn should result in improved accuracy of solar power forecasts, especially for concentrated solar power (CSP) plants. CSP plants tend to be built in more arid, less cloudy regions that are also prone to dust loading, so accurate aerosol forecasts are particularly relevant. Comparing four representations of aerosols in the WRF-Solar model over eight months of forecasts across the United States reveals substantial differences in clear-sky irradiance forecast skill.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jared A. Lee, jaredlee@ucar.edu

Abstract

Aerosol optical depth (AOD) is a primary source of solar irradiance forecast error in clear-sky conditions. Improving the accuracy of AOD in NWP models like WRF will thus reduce error in both direct normal irradiance (DNI) and global horizontal irradiance (GHI), which should improve solar power forecast errors, at least in cloud-free conditions. In this study clear-sky GHI and DNI was analyzed from four configurations of the WRF-Solar model with different aerosol representations: 1) the default Tegen climatology, 2) imposing AOD forecasts from the GEOS-5 model, 3) imposing AOD forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) model, and 4) the Thompson–Eidhammer aerosol-aware water/ice-friendly aerosol climatology. More than 8 months of these 15-min output forecasts are compared with high-quality irradiance observations at NOAA SURFRAD and Solar Radiation (SOLRAD) stations located across CONUS. In general, WRF-Solar with GEOS-5 AOD had the lowest errors in clear-sky DNI, while WRF-Solar with CAMS AOD had the highest errors, higher even than the two aerosol climatologies, which is consistent with validation of the four AOD550 datasets against AERONET stations. For clear-sky GHI, the statistics differed little between the four models, as expected because of the lesser sensitivity of GHI to aerosol loading. Hourly average clear-sky DNI and GHI were also analyzed, and they were additionally compared with CAMS model output directly. CAMS irradiance performed competitively with the best WRF-Solar configuration (with GEOS-5 AOD). The markedly different performance of CAMS versus WRF-Solar with CAMS AOD indicates that CAMS is apparently less sensitive to AOD550 than WRF-Solar is.

Significance Statement

Particles in the atmosphere called aerosols, which can include dust, smoke, sea salt, sulfates, black carbon, and organic carbon, absorb and scatter incoming sunlight. Improving the representation of aerosols in numerical weather prediction models reduces forecast errors in solar irradiance at ground level, particularly direct normal irradiance, during cloud-free conditions. This in turn should result in improved accuracy of solar power forecasts, especially for concentrated solar power (CSP) plants. CSP plants tend to be built in more arid, less cloudy regions that are also prone to dust loading, so accurate aerosol forecasts are particularly relevant. Comparing four representations of aerosols in the WRF-Solar model over eight months of forecasts across the United States reveals substantial differences in clear-sky irradiance forecast skill.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jared A. Lee, jaredlee@ucar.edu
Save