• Abe, H., Y. Tanimoto, T. Hasegawa, and N. Ebuchi, 2016: Oceanic Rossby waves over eastern tropical Pacific of both hemispheres forced by anomalous surface winds after mature phase of ENSO. J. Phys. Oceanogr., 46, 33973414, https://doi.org/10.1175/JPO-D-15-0118.1.

    • Search Google Scholar
    • Export Citation
  • Allen, T. L., and B. E. Mapes, 2017: The late spring Caribbean rain-belt: Climatology and dynamics. Int. J. Climatol., 37, 49814993, https://doi.org/10.1002/joc.5136.

    • Search Google Scholar
    • Export Citation
  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr., 5, 91102.

  • Barnes, G., 2001: Severe local storms in the tropics. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 359–432, https://doi.org/10.1175/0065-9401-28.50.359.

  • Boettcher, M., and H. Wernli, 2013: A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Wea. Rev., 141, 11391154, https://doi.org/10.1175/MWR-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, A. A., and M. Taylor, 2002: Investigating the link between early season Caribbean rainfall and the El Niño. Int. J. Climatol., 22, 87106, https://doi.org/10.1002/joc.711.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2002: A North Pacific short-wave train during the extreme phases of ENSO. J. Climate, 15, 23592376, https://doi.org/10.1175/1520-0442(2002)015<2359:ANPSWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • CPC, 2021: AAO, AO, NAO, PNA. National Weather Service, accessed 7 May 2022, www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml.

  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Duran-Quesada, A. M., 2012: Sources of moisture for Central America and transport based on a Lagrangian approach: Variability, contributions to precipitation and transport mechanisms. Ph.D. thesis, University of Vigo, 287 pp.

  • Fröhlich, L., P. Knippertz, A. H. Fink, and E. Hohberger, 2013: An objective climatology of tropical plumes. J. Climate, 26, 50445060, https://doi.org/10.1175/JCLI-D-12-00351.1.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2001: Seasonality in the impact of ENSO and the North Atlantic high on Caribbean rainfall. Phys. Chem. Earth, 26, 143147, https://doi.org/10.1016/S1464-1909(00)00231-8.

    • Search Google Scholar
    • Export Citation
  • Gidden, M. J., and Coauthors, 2019: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12, 14431475, https://doi.org/10.5194/gmd-12-1443-2019.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Harrigan, S., and Coauthors, 2020: GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Sys. Sci. Data, 12, 20432060, https://doi.org/10.5194/essd-12-2043-2020.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. V. Domeisen, 2018: The tropospheric pathway of the ENSO–North Atlantic teleconnection. J. Climate, 31, 45634584, https://doi.org/10.1175/JCLI-D-17-0716.1.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2020: MJO influence in the Caribbean. Theor. Appl. Climatol., 139, 15591567, https://doi.org/10.1007/s00704-019-03037-x.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2022: Inter-comparison of past and projected climate trends in Puerto Rico: 1950–2100. J. Water Climate Change, 13, 27132724, https://doi.org/10.2166/wcc.2022.071.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and D. M. Sanchez, 2009: Composite meteorological forcing of Puerto Rican springtime flood events. Wea. Forecasting, 24, 262271, https://doi.org/10.1175/2008WAF2222151.1.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., A. Winter, and B. A. Malmgren, 2007: Sub-regional precipitation climate of the Caribbean and relationships with ENSO and NAO. J. Geophys. Res., 112, D16107, https://doi.org/10.1029/2006JD007541.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-2 reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a sub-tropical anticyclone. Part II: A global survey. J. Climate, 23, 51095125, https://doi.org/10.1175/2010JCLI3414.1.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., 2004: Cases of heavy precipitation and flash floods in the Caribbean during El Niño winters. J. Hydrometeor., 5, 577594, https://doi.org/10.1175/1525-7541(2004)005<0577:COHPAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., 2014: Climate algorithm theoretical basis document: Outgoing longwave radiation (OLR). NOAA Climate Data Record Program Doc. CDRP-ATBD-0526, 46 pp.

  • Lopez, H., and B. P. Kirtman, 2019: ENSO influence over the Pacific North American sector: Uncertainty due to atmospheric internal variability. Climate Dyn., 52, 61496172, https://doi.org/10.1007/s00382-018-4500-0.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., G. Chen, and D. A. Burrows, 2017: Wave events: Climatology, trends, and relationship to Northern Hemisphere winter blocking and weather extremes. J. Climate, 30, 56755697, https://doi.org/10.1175/JCLI-D-16-0692.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, C., L. Goddard, Y. Kushnir, and M. Ting, 2019: Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Climate Dyn., 53, 825846, https://doi.org/10.1007/s00382-019-04616-4.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., A. J. Busalacchi, S. Nigam, and A. Ruiz-Barradas, 2008: Winter and summer structure of the Caribbean low-level jet. J. Climate, 21, 12601276, https://doi.org/10.1175/2007JCLI1855.1.

    • Search Google Scholar
    • Export Citation
  • Riboldi, J., E. Rousi, F. D’Andrea, G. Rivière, and F. Lott, 2022: Circumglobal Rossby wave patterns during boreal winter highlighted by space–time spectral analysis. Wea. Climate Dyn., 3, 449469, https://doi.org/10.5194/wcd-3-449-2022.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA HYSPLIT atmospheric transport and dispersion modelling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Steinschneider, S., and U. Lall, 2016: Spatiotemporal structure of precipitation related to tropical moisture exports over the eastern United States and its relation to climate teleconnections. J. Hydrometeor., 17, 897913, https://doi.org/10.1175/JHM-D-15-0120.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Search Google Scholar
    • Export Citation
  • White, W. B., Y. M. Tourre, M. Barlow, and M. Dettinger, 2003: A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific basin. J. Geophys. Res., 108, 3070, https://doi.org/10.1029/2002JC001490.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 114 7
Full Text Views 29 29 0
PDF Downloads 37 37 1

Springtime Southwest Cloud Bands in the Central Caribbean

Mark R. JuryaPhysics Department, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico
bGeography Department, University of Zululand, KwaDlangezwa, South Africa

Search for other papers by Mark R. Jury in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6871-403X
Restricted access

Abstract

Southwest cloud bands during spring (April and May) bring rains to central Caribbean islands at the end of the dry season. A cluster analysis of daily 500-hPa geopotential height fields for 1980–2021 identifies a low-west–high-east dipole pattern related to Pacific–North America response to El Niño–Southern Oscillation (ENSO) and springtime wet spells over the Dominican Republic and Puerto Rico. The regional dipole and local rain time series are ranked to identify the top 10 cases for analysis of meteorological conditions. Hovmöller plots of midlevel meridional wind and specific humidity during April 1983 and May 1986 wet spells reveal a standing Rossby wave train pattern that converges moisture onto the leading edge of a subtropical trough. Composite vertical sections during Caribbean Sea wet spells reveal lower easterly–upper westerly wind anomalies over South America associated with the equatorial Madden–Julian oscillation. Thunderstorm clusters within the southwesterly airflow induce multiday wet spells and flash floods. A second statistical method demonstrated how ENSO underpins Caribbean spring climate anomalies via tropical ocean–atmosphere Rossby wave coupling. Historical trends and long-range projections indicate that springtime tropical–midlatitude interactions may diminish due to an accelerating Hadley cell and retreating jet stream, leading to a delayed onset of the wet season across the Antilles Islands.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark R Jury, mark.jury@upr.edu

Abstract

Southwest cloud bands during spring (April and May) bring rains to central Caribbean islands at the end of the dry season. A cluster analysis of daily 500-hPa geopotential height fields for 1980–2021 identifies a low-west–high-east dipole pattern related to Pacific–North America response to El Niño–Southern Oscillation (ENSO) and springtime wet spells over the Dominican Republic and Puerto Rico. The regional dipole and local rain time series are ranked to identify the top 10 cases for analysis of meteorological conditions. Hovmöller plots of midlevel meridional wind and specific humidity during April 1983 and May 1986 wet spells reveal a standing Rossby wave train pattern that converges moisture onto the leading edge of a subtropical trough. Composite vertical sections during Caribbean Sea wet spells reveal lower easterly–upper westerly wind anomalies over South America associated with the equatorial Madden–Julian oscillation. Thunderstorm clusters within the southwesterly airflow induce multiday wet spells and flash floods. A second statistical method demonstrated how ENSO underpins Caribbean spring climate anomalies via tropical ocean–atmosphere Rossby wave coupling. Historical trends and long-range projections indicate that springtime tropical–midlatitude interactions may diminish due to an accelerating Hadley cell and retreating jet stream, leading to a delayed onset of the wet season across the Antilles Islands.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark R Jury, mark.jury@upr.edu
Save