Retrieval of Normalized Gamma Size Distribution Parameters Using Precipitation Imaging Package (PIP) Snowfall Observations during ICE-POP 2018

Ali Tokay aJoint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland
bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ali Tokay in
Current site
Google Scholar
PubMed
Close
,
Liang Liao cMorgan State University, Baltimore, Maryland
bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Liang Liao in
Current site
Google Scholar
PubMed
Close
,
Robert Meneghini bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
,
Charles N. Helms dEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Charles N. Helms in
Current site
Google Scholar
PubMed
Close
,
S. Joseph Munchak bNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by S. Joseph Munchak in
Current site
Google Scholar
PubMed
Close
,
David B. Wolff eNASA Goddard Space Flight Center Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by David B. Wolff in
Current site
Google Scholar
PubMed
Close
, and
Patrick N. Gatlin fNASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Patrick N. Gatlin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Parameters of the normalized gamma particle size distribution (PSD) have been retrieved from the Precipitation Image Package (PIP) snowfall observations collected during the International Collaborative Experiment–PyeongChang Olympic and Paralympic winter games (ICE-POP 2018). Two of the gamma PSD parameters, the mass-weighted particle diameter D mass and the normalized intercept parameter NW , have median values of 1.15–1.31 mm and 2.84–3.04 log(mm−1 m−3), respectively. This range arises from the choice of the relationship between the maximum versus equivalent diameter, D mxD eq, and the relationship between the Reynolds and Best numbers, Re–X. Normalization of snow water equivalent rate (SWER) and ice water content W by NW reduces the range in NW , resulting in well-fitted power-law relationships between SWER/NW and D mass and between W/NW and D mass. The bulk descriptors of snowfall are calculated from PIP observations and from the gamma PSD with values of the shape parameter μ ranging from −2 to 10. NASA’s Global Precipitation Measurement (GPM) mission, which adopted the normalized gamma PSD, assumes μ = 2 and 3 in its two separate algorithms. The mean fractional bias (MFB) of the snowfall parameters changes with μ, where the functional dependence on μ depends on the specific snowfall parameter of interest. The MFB of the total concentration was underestimated by 0.23–0.34 when μ = 2 and by 0.29–0.40 when μ = 3, whereas the MFB of SWER had a much narrower range (from −0.03 to 0.04) for the same μ values.

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Tokay, tokay@umbc.edu

Abstract

Parameters of the normalized gamma particle size distribution (PSD) have been retrieved from the Precipitation Image Package (PIP) snowfall observations collected during the International Collaborative Experiment–PyeongChang Olympic and Paralympic winter games (ICE-POP 2018). Two of the gamma PSD parameters, the mass-weighted particle diameter D mass and the normalized intercept parameter NW , have median values of 1.15–1.31 mm and 2.84–3.04 log(mm−1 m−3), respectively. This range arises from the choice of the relationship between the maximum versus equivalent diameter, D mxD eq, and the relationship between the Reynolds and Best numbers, Re–X. Normalization of snow water equivalent rate (SWER) and ice water content W by NW reduces the range in NW , resulting in well-fitted power-law relationships between SWER/NW and D mass and between W/NW and D mass. The bulk descriptors of snowfall are calculated from PIP observations and from the gamma PSD with values of the shape parameter μ ranging from −2 to 10. NASA’s Global Precipitation Measurement (GPM) mission, which adopted the normalized gamma PSD, assumes μ = 2 and 3 in its two separate algorithms. The mean fractional bias (MFB) of the snowfall parameters changes with μ, where the functional dependence on μ depends on the specific snowfall parameter of interest. The MFB of the total concentration was underestimated by 0.23–0.34 when μ = 2 and by 0.29–0.40 when μ = 3, whereas the MFB of SWER had a much narrower range (from −0.03 to 0.04) for the same μ values.

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ali Tokay, tokay@umbc.edu
Save
  • Boggs, P. T., R. H. Byrd, J. E. Rogers, and R. B. Schnabel, 1992: User’s reference guide for ODRPACK version 2.01: Software for weighted orthogonal distance regression. NISTIR Doc., 120 pp., https://docs.scipy.org/doc/external/odrpack_guide.pdf.

  • Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2020: Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere, 11, 619, https://doi.org/10.3390/atmos11060619.

    • Search Google Scholar
    • Export Citation
  • Gehring, J., A. Ferrone, A.-C. Billault-Roux, N. Besic, K. D. Ahn, G. W. Lee, and A. Berne, 2021: Radar and ground-level measurements of precipitation collected by the École Poytechnique Fédérale de Laussane during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic winter games. Earth Syst. Sci. Data, 13, 417433, https://doi.org/10.5194/essd-13-417-2021.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. Kelley, and S. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Search Google Scholar
    • Export Citation
  • Helms, C. N., S. J. Munchak, A. Tokay, and C. Pettersen, 2022: A comparative evaluation of snowflake particle size and shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD). Atmos. Meas. Tech., 15, 65456561, https://doi.org/10.5194/amt-15-6545-2022.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advancements in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2017: GPM/DPR level-2 algorithm theoretical basis document. Global Precipitation Measurement Program Doc., 81 pp., https://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_201708_whole_1.pdf.

  • IMAQ, 2004: IMAQ vision concepts manual. National Instruments August 2004 Edition Rep., 315 pp., https://neurophysics.ucsd.edu/Manuals/National%20Instruments/NI%20Vision%20Concepts%20Manual.pdf.

  • Khvorostyanov, V. I., and J. A. Curry, 2005: Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci., 62, 43434357, https://doi.org/10.1175/JAS3622.1.

    • Search Google Scholar
    • Export Citation
  • Kim, K., W. Bang, E.-C. Chang, F. J. Tapiador, C.-L. Tsai, E. Jung, and G. W. Lee, 2021: Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018). Atmos. Chem. Phys., 21, 11 95511 978, https://doi.org/10.5194/acp-21-11955-2021.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., T. Iguchi, T. Shimomai, and N. Kashiwagi, 2009: Raindrop size distribution modeling from a statistical rain parameter relation and its application to the TRMM Precipitation Radar rain retrieval algorithm. J. Appl. Meteor. Climatol., 48, 716724, https://doi.org/10.1175/2008JAMC1998.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and Coauthors, 2021: Snowfall in the northern Great Lakes: Lessons learned from a multi-sensor observatory. Bull. Amer. Meteor. Soc., 102, E1317E1339, https://doi.org/10.1175/BAMS-D-19-0128.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2022: GPM DPR retrievals: Algorithm, evaluation, and validation. Remote Sens., 14, 843, https://doi.org/10.3390/rs14040843.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, H. K. Nowell, and G. Liu, 2013: Scattering computations of snow aggregates 1183 from simple geometrical particle models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 14091417, https://doi.org/10.1109/JSTARS.2013.2255262.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, A. Tokay, and L. F. Bliven, 2016: Retrieval of snow properties for Ku- and Ka-band dual-frequency radar. J. Appl. Meteor. Climatol., 55, 18451858, https://doi.org/10.1175/JAMC-D-15-0355.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Tokay, 2020: Characteristics of DSD bulk parameters: Implication for radar rain retrieval. Atmosphere, 11, 670, https://doi.org/10.3390/atmos11060670.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., T.-L. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0– λ–μ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, https://doi.org/10.1175/JAS-D-14-0011.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, https://doi.org/10.1175/JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., P. A. Kucera, and L. F. Bliven, 2009: Presenting the Snowflake Video Imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, https://doi.org/10.1175/2008JTECHA1148.1.

    • Search Google Scholar
    • Export Citation
  • Pettersen, C., M. S. Kulie, L. F. Bliven, A. J. Merrelli, W. A. Petersen, T. J. Wagner, D. B. Wolff, and N. B. Wood, 2020a: A composite analysis of snowfall modes from four winter seasons in Marquette, Michigan. J. Appl. Meteor. Climatol., 59, 103124, https://doi.org/10.1175/JAMC-D-19-0099.1.

    • Search Google Scholar
    • Export Citation
  • Pettersen, C., and Coauthors, 2020b: The Precipitation Imaging Package: Assessment of microphysical and bulk characteristics of snow. Atmosphere, 11, 785, https://doi.org/10.3390/atmos11080785.

    • Search Google Scholar
    • Export Citation
  • Pettersen, C., and Coauthors, 2021: The Precipitation Imaging Package: Phase partitioning capabilities. Remote Sens., 13, 2183, https://doi.org/10.3390/rs13112183.

    • Search Google Scholar
    • Export Citation
  • Petty, W. G., and W. Huang, 2011: The modified gamma size distribution applied to inhomogeneous and non-spherical particles: Key relationships and conversions. J. Atmos. Sci., 68, 14601473, https://doi.org/10.1175/2011JAS3645.1.

    • Search Google Scholar
    • Export Citation
  • Rahman, K., and F. Y. Testik, 2020: Shapes and fall speeds of freezing and frozen raindrops. J. Hydrometeor., 21, 13111331, https://doi.org/10.1175/JHM-D-19-0204.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, R. Meneghini, J. Awaka, T. Kubota, T. Masaki, and N. Takahashi, 2021: The precipitation rate retrieval algorithms for the GPM dual-frequency precipitation radar. J. Meteor. Soc. Japan, 99, 205237, https://doi.org/10.2151/jmsj.2021-011.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 2010: Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci., 67, 33193335, https://doi.org/10.1175/2010JAS3390.1.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., A. Villalba-Pradas, A. Navarro, E. García-Ortega, K.-S. S. Lim, K. Kim, K. D. Ahn, and G. Lee, 2021: Future directions in precipitation science. Remote Sens., 13, 1074, https://doi.org/10.3390/rs13061074.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. Climatol., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiira, J., D. N. Moisseev, A. von Lerber, D. Ori, A. Tokay, L. F. Bliven, and W. Petersen, 2016: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in southern Finland. Atmos. Meas. Tech., 9, 48254841, https://doi.org/10.5194/amt-9-4825-2016.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experiment study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, https://doi.org/10.1175/JTECH-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2016: A field study of pixel-scale variability of raindrop size distribution. J. Hydrometeor., 17, 18551868, https://doi.org/10.1175/JHM-D-15-0159.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2017: A field study of footprint-space variability of raindrop size distribution. J. Hydrometeor., 18, 31653179, https://doi.org/10.1175/JHM-D-17-0003.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2020: Development and evaluation of the raindrop size distribution parameters for the NASA Global Precipitation Measurement Mission ground validation program. J. Atmos. Oceanic Technol., 37, 115128, https://doi.org/10.1175/JTECH-D-18-0071.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. von Lerber, C. Pettersen, M. S. Kulie, D. N. Moisseev, and D. B. Wolff, 2022: Retrieval of snow water equivalent by the Precipitation Imaging Package (PIP) over northern Great Lakes. J. Atmos. Oceanic Technol., 39, 3754, https://doi.org/10.1175/JTECH-D-20-0216.1.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, https://doi.org/10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, L. F. Bliven, W. Petersen, A.-M. Harri, and V. Chandrasekar, 2017: Microphysical properties of snow and their link to ZeS relations during BAECC 2014. J. Appl. Meteor. Climatol., 56, 15611582, https://doi.org/10.1175/JAMC-D-16-0379.1.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, T., V. Chandrasekar, H. Xiao, and S. S. Joshil, 2020: Characteristics of particle size distribution in the PyeongChang region of South Korea. Atmosphere, 11, 1093, https://doi.org/10.3390/atmos11101093.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information?. J. Atmos. Oceanic Technol., 20, 11061119, https://doi.org/10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 729 547 13
Full Text Views 195 146 4
PDF Downloads 169 116 3