Doppler Lidar Measurements of Wind Variability and LLJ Properties in Central Oklahoma during the August 2017 Land–Atmosphere Feedback Experiment

Yelena L. Pichugina aCIRES, University of Colorado Boulder, Boulder, Colorado
bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by Yelena L. Pichugina in
Current site
Google Scholar
PubMed
Close
,
Robert M. Banta aCIRES, University of Colorado Boulder, Boulder, Colorado
bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by Robert M. Banta in
Current site
Google Scholar
PubMed
Close
,
W. Alan Brewer bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by W. Alan Brewer in
Current site
Google Scholar
PubMed
Close
,
D. D. Turner cNOAA/Global Systems Laboratory, Boulder, Colorado

Search for other papers by D. D. Turner in
Current site
Google Scholar
PubMed
Close
,
V. O. Wulfmeyer dUniversity of Hohenheim, Stuttgart, Germany

Search for other papers by V. O. Wulfmeyer in
Current site
Google Scholar
PubMed
Close
,
E. J. Strobach aCIRES, University of Colorado Boulder, Boulder, Colorado
bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by E. J. Strobach in
Current site
Google Scholar
PubMed
Close
,
S. Baidar aCIRES, University of Colorado Boulder, Boulder, Colorado
bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by S. Baidar in
Current site
Google Scholar
PubMed
Close
, and
B. J. Carroll aCIRES, University of Colorado Boulder, Boulder, Colorado
bNOAA/Chemical Sciences Laboratory, Boulder, Colorado

Search for other papers by B. J. Carroll in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Low-level jets (LLJs) are an important nocturnal source of wind energy in the U.S. Great Plains. An August 2017 lidar-based field-measurement campaign [the Land–Atmosphere Feedback Experiment (LAFE)] studied LLJs over the central SGP site in Oklahoma and found nearly equal occurrences of the usual southerly jets and postfrontal northeasterly jets—typically rare during this season—for an opportunity to compare the two types of LLJs during this month. Southerly winds were stronger than the northeasterlies by more than 4 m s−1 on average, reflecting a significantly higher frequency of winds stronger than 12 m s−1. The analysis of this dataset has been expanded to other SGP Doppler-lidar sites to quantify the variability of winds and LLJ properties between sites of different land use. Geographic variations of winds over the study area were noted: on southerly wind nights, the winds blew stronger at the highest, westernmost sites by 2 m s−1, whereas on the northeasterly flow nights, the easternmost sites had the strongest wind speeds. Lidar measurements at 5 sites during August 2017, contrasted to the 2016–21 summertime data, revealed unusual wind and LLJ conditions. Temporal hodographs using hourly averaged winds at multiple heights revealed unorganized behavior in the turbulent stable boundary layer (SBL) below the jet nose. Above the nose, some nights showed veering qualitatively similar to inertial oscillation (IO) behavior, but at amplitudes much smaller than expected for an IO, whereas other nights showed little veering. Vertical hodographs had a linear shape in the SBL, indicating little directional shear there, and veering above, resulting in a hook-shaped hodograph with height.

Significance Statement

Doppler-lidar measurements at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) were used to quantify the variability of winds and low-level jet (LLJ) properties between five sites of different land use and wind regimes across this area. Knowledge of wind and LLJ structure and dynamics is important for many applications, and strong southerly LLJ winds at night are an important resource for wind energy. The analysis of multiyear (2016–21) summertime LLJ parameters provided insight into the LLJ climatology in this part of the Great Plains.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yelena Pichugina, yelena.pichugina@noaa.gov

Abstract

Low-level jets (LLJs) are an important nocturnal source of wind energy in the U.S. Great Plains. An August 2017 lidar-based field-measurement campaign [the Land–Atmosphere Feedback Experiment (LAFE)] studied LLJs over the central SGP site in Oklahoma and found nearly equal occurrences of the usual southerly jets and postfrontal northeasterly jets—typically rare during this season—for an opportunity to compare the two types of LLJs during this month. Southerly winds were stronger than the northeasterlies by more than 4 m s−1 on average, reflecting a significantly higher frequency of winds stronger than 12 m s−1. The analysis of this dataset has been expanded to other SGP Doppler-lidar sites to quantify the variability of winds and LLJ properties between sites of different land use. Geographic variations of winds over the study area were noted: on southerly wind nights, the winds blew stronger at the highest, westernmost sites by 2 m s−1, whereas on the northeasterly flow nights, the easternmost sites had the strongest wind speeds. Lidar measurements at 5 sites during August 2017, contrasted to the 2016–21 summertime data, revealed unusual wind and LLJ conditions. Temporal hodographs using hourly averaged winds at multiple heights revealed unorganized behavior in the turbulent stable boundary layer (SBL) below the jet nose. Above the nose, some nights showed veering qualitatively similar to inertial oscillation (IO) behavior, but at amplitudes much smaller than expected for an IO, whereas other nights showed little veering. Vertical hodographs had a linear shape in the SBL, indicating little directional shear there, and veering above, resulting in a hook-shaped hodograph with height.

Significance Statement

Doppler-lidar measurements at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) were used to quantify the variability of winds and low-level jet (LLJ) properties between five sites of different land use and wind regimes across this area. Knowledge of wind and LLJ structure and dynamics is important for many applications, and strong southerly LLJ winds at night are an important resource for wind energy. The analysis of multiyear (2016–21) summertime LLJ parameters provided insight into the LLJ climatology in this part of the Great Plains.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yelena Pichugina, yelena.pichugina@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 0.7939 MB)
Save
  • Andreas, E. L, K. J. Claffy, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459486, https://doi.org/10.1023/A:1002793831076.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, and Y. Meillier, 2006: High-resolution in situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmos. Sci., 63, 12911307, https://doi.org/10.1175/JAS3671.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, https://doi.org/10.1029/98JD01020.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, https://doi.org/10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657670, https://doi.org/10.1175/BAMS-86-5-657.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. L. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683090, https://doi.org/10.1175/JAS4002.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, https://doi.org/10.1175/BAMS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 2018: Evaluating and improving NWP forecasts for the future: How the needs of offshore wind energy can point the way. Bull. Amer. Meteor. Soc., 99, 11551176, https://doi.org/10.1175/BAMS-D-16-0310.1.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., and Coauthors, 2017: Evaluation of turbulence measurement techniques from a single Doppler lidar. Atmos. Meas. Tech., 10, 30213039, https://doi.org/10.5194/amt-10-3021-2017.

    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., P. M. Klein, and P. B. Chilson, 2020: Contrasting characteristics and evolution of southerly low-level jets during different boundary-layer regimes. Bound.-Layer Meteor., 174, 179202, https://doi.org/10.1007/s10546-019-00481-0.

    • Search Google Scholar
    • Export Citation
  • Carroll, B. J., B. B. Demoz, and R. Delgado, 2019: An overview of low-level jet winds and corresponding mixed layer depths during PECAN. J. Geophys. Res. Atmos., 124, 91419160, https://doi.org/10.1029/2019JD030658.

    • Search Google Scholar
    • Export Citation
  • Carroll, B. J., B. B. Demoz, D. D. Turner, and R. Delgado, 2021: Lidar observations of a mesoscale moisture transport event impacting convection and comparison to rapid refresh model analysis. Mon. Wea. Rev., 149, 463477, https://doi.org/10.1175/MWR-D-20-0151.1.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical study of nocturnal low-level jets over gently sloping terrain. J. Atmos. Sci., 74, 28132834, https://doi.org/10.1175/JAS-D-17-0013.1.

    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., E. Fedorovich, and A. Shapiro, 2017: A 1D theoretical analysis of northerly low-level jets over the Great Plains. J. Atmos. Sci., 74, 34193431, https://doi.org/10.1175/JAS-D-16-0333.1.

    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L. Andreas, and P. S. Guest, 2005: Stable boundary-layer scaling regimes: The Sheba data. Bound.-Layer Meteor., 116, 201235, https://doi.org/10.1007/s10546-004-2729-0.

    • Search Google Scholar
    • Export Citation
  • Grnyning, S. E., E. Batchvarova, B. Brümmer, H. Jørgensen, and S. Larsen, 2007: On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound.-Layer Meteor., 124, 251268, https://doi.org/10.1007/s10546-007-9166-9.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Search Google Scholar
    • Export Citation
  • Kelley, N., M. Shirazi, D. Jager, S. Wilde, J. Adams, and M. Buhl, 2004: Lamar Low-Level Jet Project interim report. NREL/TP-500-34593, 216 pp., https://www.nrel.gov/docs/fy04osti/34593.pdf.

  • Klein, P. M., X.-M. Hu, and M. Xue, 2014: Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, https://doi.org/10.1007/s10546-013-9864-4.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., and Coauthors, 2015: LABLE: A multi-institutional, student-led, atmospheric boundary-layer experiment. Bull. Amer. Meteor. Soc., 96, 17431764, https://doi.org/10.1175/BAMS-D-13-00267.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., 2003: Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J. Atmos. Sci., 60, 26612673, https://doi.org/10.1175/1520-0469(2003)060<2661:IAEIOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, https://doi.org/10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., R. C. Heald, D. H. Lenschow, B. B. Stankov, and I. Troen, 1979: An observational study of the structure of the nocturnal boundary layer. Bound.-Layer Meteor., 17, 247264, https://doi.org/10.1007/BF00117983.

    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1954: A study of the mean southerly wind maximum in low levels associated with a period of summer precipitation in the Middle West. Bull. Amer. Meteor. Soc., 35, 166170, https://doi.org/10.1175/1520-0477-35.4.166.

    • Search Google Scholar
    • Export Citation
  • Meyers, T., T. R. Lee, C. B. Baker, M. Buban, and E. Dumas, 2018: NOAA Air Resources Laboratory Atmospheric Turbulence and Diffusion Division Contribution to LAFE Field Campaign Report. NOAA Tech. Rep. DOE/SC-ARM-18-011, 12 pp., https://www.osti.gov/servlets/purl/1427720.

  • Mirocha, J. D., M. D. Simpson, J. D. Fast, L. K. Berg, and R. L. Baskett, 2016: Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting Model. Wind Energy, 19, 739762, https://doi.org/10.1002/we.1862.

    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, https://doi.org/10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. Nogues-Paegle, and J. Paegle, 1995: Physical mechanisms of the 1993 floods. J. Atmos. Sci., 52, 879895, https://doi.org/10.1175/1520-0469(1995)052<0879:PMOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. Krishnamurthy, 2022: Doppler Lidar (DL) instrument handbook. Tech. Rep. DOE/SC-ARM-TR-101, 59 pp., https://www.arm.gov/publications/tech_reports/handbooks/dl_handbook.pdf.

  • Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 39373953, https://doi.org/10.1175/JAS-D-17-0059.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. D. Clark, 2017: On the initiation of the 20 June 2015 Great Plains low-level jet. J. Appl. Meteor. Climatol., 56, 18831895, https://doi.org/10.1175/JAMC-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, https://doi.org/10.1175/2010JAS3368.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low level jet. Mon. Wea. Rev., 116, 94105, https://doi.org/10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., and R. M. Banta, 2010: Stable boundary-layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteor. Climatol., 49, 2035, https://doi.org/10.1175/2009JAMC2168.1.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., S. C. Tucker, R. M. Banta, W. A. Brewer, N. D. Kelley, B. J. Jonkman, and R. K. Newsom, 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327, https://doi.org/10.1175/2008JTECHA988.1.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., and Coauthors, 2019: Spatial variability of winds and HRRR-NCEP model error statistics at three Doppler-lidar sites in the wind-energy generation region of the Columbia River Basin. J. Appl. Meteor. Climatol., 58, 16331656, https://doi.org/10.1175/JAMC-D-18-0244.1.

    • Search Google Scholar
    • Export Citation
  • Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over Midwest United States. J. Appl. Meteor., 1, 4347, https://doi.org/10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555582, https://doi.org/10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2,

    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, https://doi.org/10.1175/JAS-D-13-0243.1.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., J. Mann, N. Vasiljevic, and G. Lea, 2015: A six-beam method to measure turbulence statistics using ground-based wind lidars. Atmos. Meas. Tech., 8, 729740, https://doi.org/10.5194/amt-8-729-2015.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2009: Nocturnal low-level jet of a shallow slope. Acta Geophys., 57, 950980, https://doi.org/10.2478/s11600-009-0026-5.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains low-level jet. J. Atmos. Sci., 73, 30373056, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Search Google Scholar
    • Export Citation
  • Shippert, T., R. Newsom, and L. Riihimaki, 2016: Doppler lidar horizontal wind profiles (DLPROFWIND4NEWS), 2021-06-01 to 2021-08-31, Southern Great Plains (SGP) Waukomis, OK (Extended) (E37). ARM Data Center, accessed 8 August 2019, https://doi.org/10.5439/1178582.

  • Smith, E. N., J. Gibbs, E. Fedorovich, and P. M. Klein, 2018: WRF model study of the Great Plains low-level jet: Effects of grid spacing and boundary layer parameterization. J. Appl. Meteor. Climatol., 57, 23752397, https://doi.org/10.1175/JAMC-D-17-0361.1.

    • Search Google Scholar
    • Export Citation
  • Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the weather research and forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, https://doi.org/10.1002/we.288.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, A. Behrendt, T. A. Bonin, A. Choukulkar, R. K. Newsom, W. A. Brewer, and D. R. Cook, 2018: Response of the land-atmosphere system over north-central Oklahoma during the 2017 eclipse. Geophys. Res. Lett., 45, 16681675, https://doi.org/10.1002/2017GL076908.

    • Search Google Scholar
    • Export Citation
  • Vanderwende, B. J., J. K. Lundquist, M. E. Rhodes, E. S. Takle, and S. L. Irvin, 2015: Observing and simulating the summertime low-level jet in central Iowa. Mon. Wea. Rev., 143, 23192336, https://doi.org/10.1175/MWR-D-14-00325.1.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. Baas, F. C. Bosveld, and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, https://doi.org/10.1175/2010JAS3289.1.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, https://doi.org/10.1007/BF02430331.

    • Search Google Scholar
    • Export Citation
  • Werth, D., R. Kurzeja, N. L. Dias, G. Zhang, H. Duarte, M. Fischer, M. Parker, and M. Leclerc, 2011: The simulation of the southern Great Plains nocturnal boundary layer and the low-level jet with a high-resolution mesoscale atmospheric model. J. Appl. Meteor. Climatol., 50, 14971513, https://doi.org/10.1175/2011JAMC2272.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2018: A new research approach for observing and characterizing land–atmosphere feedback. Bull. Amer. Meteor. Soc., 99, 16391667, https://doi.org/10.1175/BAMS-D-17-0009.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, https://doi.org/10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 452 452 10
Full Text Views 209 209 6
PDF Downloads 215 215 6