Can We Estimate the Uncertainty Level of Satellite Long-Term Precipitation Records?

Veljko Petković aEarth System Science Interdisciplinary Center/Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, College Park, Maryland
bColorado State University, Fort Collins, Colorado

Search for other papers by Veljko Petković in
Current site
Google Scholar
PubMed
Close
,
Paula J. Brown bColorado State University, Fort Collins, Colorado

Search for other papers by Paula J. Brown in
Current site
Google Scholar
PubMed
Close
,
Wesley Berg bColorado State University, Fort Collins, Colorado

Search for other papers by Wesley Berg in
Current site
Google Scholar
PubMed
Close
,
David L. Randel bColorado State University, Fort Collins, Colorado

Search for other papers by David L. Randel in
Current site
Google Scholar
PubMed
Close
,
Spencer R. Jones bColorado State University, Fort Collins, Colorado

Search for other papers by Spencer R. Jones in
Current site
Google Scholar
PubMed
Close
, and
Christian D. Kummerow bColorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several decades of continuous improvements in satellite precipitation algorithms have resulted in fairly accurate level-2 precipitation products for local-scale applications. Numerous studies have been carried out to quantify random and systematic errors at individual validation sites and regional networks. Understanding uncertainties at larger scales, however, has remained a challenge. Temporal changes in precipitation regional biases, regime morphology, sampling, and observation-vector information content, all play important roles in defining the accuracy of satellite rainfall retrievals. This study considers these contributors to offer a quantitative estimate of uncertainty in recently produced global precipitation climate data record. Generated from intercalibrated observations collected by a constellation of passive microwave (PMW) radiometers over the course of 30 years, this data record relies on Global Precipitation Measurement (GPM) mission enterprise PMW precipitation retrieval to offer a long-term global monthly precipitation estimates with corresponding uncertainty at 5° scales. To address changes in the information content across different constellation members the study develops synthetic datasets from GPM Microwave Imager (GMI) sensor, while sampling- and morphology-related uncertainties are quantified using GPM’s dual-frequency precipitation radar (DPR). Special attention is given to separating precipitation into self-similar states that appear to be consistent across environmental conditions. Results show that the variability of bias patterns can be explained by the relative occurrence of different precipitation states across the regions and used to calculate product’s uncertainty. It is found that at 5° spatial scale monthly mean precipitation uncertainties in tropics can exceed 10%.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

Corresponding author: Veljko Petković, veljko.petkovic@umd.edu

Abstract

Several decades of continuous improvements in satellite precipitation algorithms have resulted in fairly accurate level-2 precipitation products for local-scale applications. Numerous studies have been carried out to quantify random and systematic errors at individual validation sites and regional networks. Understanding uncertainties at larger scales, however, has remained a challenge. Temporal changes in precipitation regional biases, regime morphology, sampling, and observation-vector information content, all play important roles in defining the accuracy of satellite rainfall retrievals. This study considers these contributors to offer a quantitative estimate of uncertainty in recently produced global precipitation climate data record. Generated from intercalibrated observations collected by a constellation of passive microwave (PMW) radiometers over the course of 30 years, this data record relies on Global Precipitation Measurement (GPM) mission enterprise PMW precipitation retrieval to offer a long-term global monthly precipitation estimates with corresponding uncertainty at 5° scales. To address changes in the information content across different constellation members the study develops synthetic datasets from GPM Microwave Imager (GMI) sensor, while sampling- and morphology-related uncertainties are quantified using GPM’s dual-frequency precipitation radar (DPR). Special attention is given to separating precipitation into self-similar states that appear to be consistent across environmental conditions. Results show that the variability of bias patterns can be explained by the relative occurrence of different precipitation states across the regions and used to calculate product’s uncertainty. It is found that at 5° spatial scale monthly mean precipitation uncertainties in tropics can exceed 10%.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM): Science and Applications Special Collection.

Corresponding author: Veljko Petković, veljko.petkovic@umd.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., J. J. Wang, G. Gu, and G. J. Huffman, 2009: A ten-year tropical rainfall climatology based on a composite of TRMM products. J. Meteor. Soc. Japan, 87A, 281293, https://doi.org/10.2151/jmsj.87A.281.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, https://doi.org/10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A Tool to Estimate Land–Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, https://doi.org/10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Backus, G., and F. Gilbert, 1970: Uniqueness in the inversion of inaccurate gross Earth data. Philos. Trans. Roy. Soc., A266, 123192, https://doi.org/10.1098/rsta.1970.0005.

    • Search Google Scholar
    • Export Citation
  • Beck, C., J. Grieser, and B. Rudolf, 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Klimastatusbericht, 2004, 181190.

    • Search Google Scholar
    • Export Citation
  • Berg, W., 2016: GPM GMI_R common calibrated brightness temperatures collocated L1C 1.5 hours 13 km V05. Goddard Earth Sciences Data and Information Services Center, accessed 1 March 2019, https://doi.org/10.5067/GPM/GMI/R/1C/05.

  • Berg, W., 2017: Towards developing a long-term high-quality intercalibrated TRMM/GPM radiometer dataset. 2017 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, IEEE, 248–250, https://doi.org/10.1109/IGARSS.2017.8126941.

  • Berg, W., T. L’Ecuyer, and C. D. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33, 26392654, https://doi.org/10.1175/JTECH-D-16-0100.1.

    • Search Google Scholar
    • Export Citation
  • Berg, W., R. Kroodsma, C. D. Kummerow, and D. S. McKague, 2018: Fundamental climate data records of microwave brightness temperatures. Remote Sens., 10, 1306, https://doi.org/10.3390/rs10081306.

    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 10 January 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and C. D. Kummerow, 2015: The sensitivity of rainfall estimation to error assumptions in a Bayesian passive microwave retrieval algorithm. J. Appl. Meteor. Climatol., 54, 408422, https://doi.org/10.1175/JAMC-D-14-0105.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research, Vol. 67, Springer, 343–353, https://doi.org/10.1007/978-3-030-24568-9_19.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., T. Matsui, and S. Ringerud, 2021: Precipitation retrievals from passive microwave cross-track sensors: The Precipitation Retrieval and Profiling Scheme. Remote Sens., 13, 947, https://doi.org/10.3390/rs13050947.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33, 318, https://doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, https://doi.org/10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Schröder, F. A. Furuzawa, C. Kummerow, E. Rustemeier, and U. Schneider, 2019: Inter-product biases in global precipitation extremes. Environ. Res. Lett., 14, 125016, https://doi.org/10.1088/1748-9326/ab5da9.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., T. Iguchi, N. Takahashi, K. Iwanami, and T. Ushio, 2005: The Global Satellite Mapping of Precipitation (GSMaP) project. IGARSS’05: Proc. 2005 IEEE Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, IEEE, 3414–3416, https://doi.org/10.1109/IGARSS.2005.1526575.

  • Olson, W., 2017: GPM DPR and GMI combined precipitation L2B 1.5 hours 5 km V05. Goddard Earth Sciences Data and Information Services Center, accessed 1 March 2019, https://doi.org/10.5067/GPM/DPRGMI/CMB/2B/05.

  • Petković, V., and C. D. Kummerow, 2017: Understanding the sources of satellite passive microwave rainfall retrieval systematic errors over land. J. Appl. Meteor. Climatol., 56, 597614, https://doi.org/10.1175/JAMC-D-16-0174.1.

    • Search Google Scholar
    • Export Citation
  • Petković, V., M. Orescanin, P. Kirstetter, C. Kummerow, and R. Ferraro, 2019: Enhancing PMW satellite precipitation estimation: Detecting convective class. J. Atmos. Oceanic Technol., 36, 23492363, https://doi.org/10.1175/JTECH-D-19-0008.1.

    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., T. Fuchs, A. Meyer-Christoffer, and B. Rudolf, 2008: Global precipitation analysis products of the GPCC. GPCC DWD Publ. 112, 17 pp., https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_lastversion.pdf.

  • Schneider, U., M. Ziese, A. Meyer-Christoffer, P. Finger, E. Rustemeier, and A. Becker, 2016: The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. IAHS Publ., 374, 2934, https://doi.org/10.5194/piahs-374-29-2016.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2017: Global precipitation measurements for validating climate models. Atmos. Res., 197, 120, https://doi.org/10.1016/j.atmosres.2017.06.021.

    • Search Google Scholar
    • Export Citation
  • Watters, D., A. Battaglia, and R. P. Allan, 2021: The diurnal cycle of precipitation according to multiple decades of global satellite observations, three CMIP6 models, and the ECMWF reanalysis. J. Climate, 34, 50635080, https://doi.org/10.1175/JCLI-D-20-0966.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1491 1491 64
Full Text Views 202 202 25
PDF Downloads 201 201 20