Frozen Hydrometeor Terminal Fall Velocity Dependence on Particle Habit and Riming as Observed by Vertically Pointing Radars

Sergey Y. Matrosov aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4816-1375
Restricted access

Abstract

Vertically pointing Ka-band radar measurements are used to derive fall velocity–reflectivity factor (Vt=aZeb) relations for frozen hydrometeor populations of different habits during snowfall events observed at Oliktok Point, Alaska, and at the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC). Case study events range from snowfall with highly rimed particles observed during periods with large amounts of supercooled liquid water path (LWP > 320 g m−2) to unrimed snowflakes including instances when pristine planar crystals were the dominant frozen hydrometeor habit. The prefactor a and the exponent b in the observed VtZe relations scaled to the sea level vary in the approximate ranges 0.5–1.4 and 0.03–0.13, respectively (reflectivities are in mm6 m−3 and velocities are in m s−1). The coefficient a values are the smallest for planar crystals (a ∼ 0.5) and the largest (a > 1.2) for particles under severe riming conditions with high LWP. There is no clear distinction between b values for high and low LWP conditions. The range of the observed VtZe relation coefficients is in general agreement with results of modeling using fall velocity–size (υt = αDβ) relations for individual particles found in literature for hydrometeors of different habits, though there is significant variability in α and β coefficients from different studies even for a same particle habit. Correspondences among coefficients in the VtZe relations for particle populations and in the individual particle υtD relations are analyzed. These correspondences and the observed VtZe relations can be used for evaluating different frozen hydrometeor fall velocity parameterizations in models.

Significance Statement

Frozen hydrometeor fall velocities influence cloud life cycles and the moisture transport in the atmosphere. The knowledge of these velocities is also needed to enhance remote sensing of snowfall parameters. In this study, the relations between fall velocities and radar reflectivities of snowflakes of different types and shapes are quantitively analyzed using observations with vertically pointing radars.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov

Abstract

Vertically pointing Ka-band radar measurements are used to derive fall velocity–reflectivity factor (Vt=aZeb) relations for frozen hydrometeor populations of different habits during snowfall events observed at Oliktok Point, Alaska, and at the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC). Case study events range from snowfall with highly rimed particles observed during periods with large amounts of supercooled liquid water path (LWP > 320 g m−2) to unrimed snowflakes including instances when pristine planar crystals were the dominant frozen hydrometeor habit. The prefactor a and the exponent b in the observed VtZe relations scaled to the sea level vary in the approximate ranges 0.5–1.4 and 0.03–0.13, respectively (reflectivities are in mm6 m−3 and velocities are in m s−1). The coefficient a values are the smallest for planar crystals (a ∼ 0.5) and the largest (a > 1.2) for particles under severe riming conditions with high LWP. There is no clear distinction between b values for high and low LWP conditions. The range of the observed VtZe relation coefficients is in general agreement with results of modeling using fall velocity–size (υt = αDβ) relations for individual particles found in literature for hydrometeors of different habits, though there is significant variability in α and β coefficients from different studies even for a same particle habit. Correspondences among coefficients in the VtZe relations for particle populations and in the individual particle υtD relations are analyzed. These correspondences and the observed VtZe relations can be used for evaluating different frozen hydrometeor fall velocity parameterizations in models.

Significance Statement

Frozen hydrometeor fall velocities influence cloud life cycles and the moisture transport in the atmosphere. The knowledge of these velocities is also needed to enhance remote sensing of snowfall parameters. In this study, the relations between fall velocities and radar reflectivities of snowflakes of different types and shapes are quantitively analyzed using observations with vertically pointing radars.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov
Save
  • ARM User Facility, 2013: Balloon-borne sounding system (SONDEWNPN). ARM Mobile Facility, Oliktok Point, Alaska; AMF3 (M1), ARM Data Center, accessed 12 December 2020, https://doi.org/10.5439/1595321.

  • ARM User Facility, 2014: MWR retrievals with MWRRET version 2 (MWRRET2TURN). 2016-10-21 to 2016-10-22, ARM Mobile Facility Oliktok Point, Alaska; AMF3 (M1), ARM Data Center, accessed 12 December 2020, https://doi.org/10.5439/1566156.

  • ARM User Facility, 2015: Ka ARM zenith radar (KAZRGE). 2016-10-21 to 2016-11-11, ARM Mobile Facility Oliktok Point, Alaska; AMF3 (M1), ARM Data Center, accessed 12 December 2020, https://doi.org/10.5439/1025214.

  • ARM User Facility, 2016: Ka-band scanning ARM cloud radar (KASACRHSRHI). 2016-10-21 to 2016-10-21, ARM Mobile Facility Oliktok Point, Alaska; AMF3 (M1), ARM Data Center, accessed 12 December 2020, https://doi.org/10.5439/1046197.

  • ARM User Facility, 2019a: Ka ARM zenith radar (KAZRCFRGE). ARM Mobile Facility MOSAiC (drifting obs – study of Arctic climate); AMF2 (M1), ARM Data Center, accessed 12 December 2020, https://doi.org/10.5439/1498936.

  • ARM User Facility, 2019b: MWR retrievals (MWRRET1LILJCLOU). ARM Mobile Facility MOSAiC (drifting obs – study of Arctic climate); AMF2 (M1), ARM Data Center, accessed 12 December 2020, https://doi.org/10.5439/1027369.

  • ARM User Facility, 2019c: Navigational location and attitude (NAV). 2019-11-01 to 2019-11-02, ARM Mobile Facility MOSAiC (drifting obs – study of Arctic climate); AMF2 (M1), ARM Data Center, accessed 12 December 2022, https://doi.org/10.5439/1150247.

  • ARM User Facility, 2019d: Balloon-borne sounding system (SONDEWNPN). ARM Mobile Facility MOSAiC (drifting obs – study of Arctic climate); AMF2 (M1), ARM Data Center, accessed 13 December 2022, https://doi.org/10.5439/1595321.

  • Barthazy, E., and R. Schefold, 2006: Fall velocity of snowflakes of different riming degree and crystal types. Atmos. Res., 82, 391398, https://doi.org/10.1016/j.atmosres.2005.12.009.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Thompson, and M. Schonhuber, 2008: Aggregate terminal velocities/temperature relations. J. Appl. Meteor. Climatol., 47, 27292736, https://doi.org/10.1175/2008JAMC1869.1.

    • Search Google Scholar
    • Export Citation
  • Fitch, K. E., C. Hang, A. Talaei, and T. J. Garrett, 2021: Arctic observations and numerical simulations of surface wind effects on multi-angle snowflake camera measurements. Atmos. Meas. Tech., 14, 11271142, https://doi.org/10.5194/amt-14-1127-2021.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 65156522, https://doi.org/10.1002/2014GL061016.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, https://doi.org/10.5194/amt-5-2625-2012.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., R. G. Strauch, D. C. Welsh, and S. Y. Matrosov, 1992: Cloud layers, particle identification, and rain profiles from ZRVf measurements by clear-air Doppler radars. J. Atmos. Oceanic Technol., 9, 108119, https://doi.org/10.1175/1520-0426(1992)009<0108:CLPIAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2011: The Spectral Ice Habit Prediction System (SHIPS). Part IV: Box model simulations of the habit-dependent aggregation process. J. Atmos. Sci., 68, 11421161, https://doi.org/10.1175/2011JAS3667.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099, https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Y. Matrosov, and N. B. Wood, 2016: Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W-bands, emphasizing CloudSat. J. Appl. Meteor. Climatol., 55, 20632090, https://doi.org/10.1175/JAMC-D-15-0290.1.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., and D. Moisseev, 2020: Long-term statistics of riming in nonconvective clouds derived from ground-based Doppler cloud radar observations. J. Atmos. Sci., 77, 34953508, https://doi.org/10.1175/JAS-D-20-0007.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, and Coauthors, 2016: Development and applications of ARM millimeter-wavelength cloud radars. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1.

  • Kropfli, R. A., B. W. Bartram, and S. Y. Matrosov, 1990: The upgraded WPL dual-polarization 8-mm Doppler radar for microphysical and climate research. Preprints, Conf. on Cloud Physics, San Francisco, CA, Amer. Meteor. Soc., 341–345.

  • Lee, J., S.-H. Jung, H.-M. Park, S. Kwon, P.-L. Lin, and G. Lee, 2015: Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements. Adv. Atmos. Sci., 32, 12771290, https://doi.org/10.1007/s00376-015-4234-4.

    • Search Google Scholar
    • Export Citation
  • Li, C., K. Lim, Y. Berk, A. Abraham, M. Heisel, M. Guala, F. Coletti, and J. Hong, 2021: Settling and clustering of snow particles in atmospheric turbulence. J. Fluid Mech., 912, A49, https://doi.org/10.1017/jfm.2020.1153.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., 2019: MASC snow particle images. ARM Mobile Facility Oliktok Point, Alaska; AMF3 (M1), ARM Data Center, accessed 21 February 2019, https://doi.org/10.5439/1497701.

  • Maahn, M., F. Hoffman, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmos. Meas. Tech., 12, 31513171, https://doi.org/10.5194/amt-12-3151-2019.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., D. Moisseev, I. Stainke, N. Maherndl, and M. Shupe, 2023: Introducing the Video In Situ Snowfall Sensor (VISSS). EGUsphere, https://doi.org/10.5194/egusphere-2023-655.

  • Martner, B. E., B. W. Bartram, J. S. Gibson, W. C. Campbell, R. F. Reinking, and S. Y. Matrosov, 2002: An overview of NOAA/ETLs scanning Ka-band cloud radar. 16th Conf. on Hydrology, Orlando, FL, Amer. Meteor. Soc., P2.1, https://ams.confex.com/ams/pdfpapers/24430.pdf.

  • Matrosov, S. Y., 2021: Polarimetric radar variables in snowfall at Ka- and W-band frequency bands: A comparative analysis. J. Atmos. Oceanic Technol., 38, 91101, https://doi.org/10.1175/JTECH-D-20-0138.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J. Appl. Meteor. Climatol., 56, 24792488, https://doi.org/10.1175/JAMC-D-17-0076.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and D. D. Turner, 2018: Retrieving mean temperature of atmospheric liquid water layers using microwave radiometer measurements. J. Atmos. Oceanic Technol., 35, 10911102, https://doi.org/10.1175/JTECH-D-17-0179.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, https://doi.org/10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, https://doi.org/10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., C. G. Schmitt, M. Maahn, and G. de Boer, 2017: Atmospheric ice particle shape estimates from polarimetric radar measurements and in situ observations. J. Atmos. Oceanic Technol., 34, 25692587, https://doi.org/10.1175/JTECH-D-17-0111.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. V. Ryzhkov, M. Maahn, and G. de Boer, 2020: Hydrometeor shape variability in snowfall as retrieved from polarimetric radar measurements. J. Appl. Meteor. Climatol., 59, 15031517, https://doi.org/10.1175/JAMC-D-20-0052.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., M. D. Shupe, and T. Uttal, 2022a: High temporal resolution estimates of Arctic snowfall rates emphasizing gauge and radar-based retrievals from the MOSAiC expedition. Elementa, 10, 00101, https://doi.org/10.1525/elementa.2021.00101.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. Korolev, M. Wolde, and C. Nguyen, 2022b: Sizing ice hydrometeor populations using the dual-wavelength radar ratio. Atmos. Meas. Tech., 15, 63736386, https://doi.org/10.5194/amt-15-6373-2022.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles. Academic Press, 690 pp.

  • Mitchell, D. L., 1996: The use of mass- and area-dimensional power laws for determining precipitating particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mosimann, L., 1995: An improved method for determining the degree of snow crystal riming by vertical Doppler radar. Atmos. Res., 37, 305323, https://doi.org/10.1016/0169-8095(94)00050-N.

    • Search Google Scholar
    • Export Citation
  • Nixdorf, U., and Coauthors, 2021: MOSAiC extended acknowledgment. Zenodo, 10 pp., https://doi.org/10.5281/zenodo.5179738.

  • Orr, B. W., and R. A. Kropfli, 1999: A method for estimating particle fall velocities from vertically pointing Doppler radar. J. Atmos. Oceanic Technol., 16, 2937, https://doi.org/10.1175/1520-0426(1999)016<0029:AMFEPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and C. R. Williams, 2011: The accuracy of radar estimates of ice terminal fall speed from vertically pointing Doppler radar measurements. J. Appl. Meteor. Climatol., 50, 21202138, https://doi.org/10.1175/JAMC-D-10-05031.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, https://doi.org/10.1175/1520-0426-19.3.296.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Bukovcic, A. Murphy, P. Zhang, and G. McFarquhar, 2018: Ice microphysical retrievals using polarimetric radar data. 10th European Conf. on Radar in Meteorology and Hydrology, Ede-Wageningen, Netherlands, Wageningen University and Research, 494–504, https://edepot.wur.nl/454537.

  • Schaer, M., C. Praz, and A. Berne, 2020: Identification of blowing snow particles in images from a Multi-Angle Snowflake Camera. Cryosphere, 14, 367384, https://doi.org/10.5194/tc-14-367-2020.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., K. Sulia, Z. J. Lebo, A. J. Heymsfield, V. Przybyo, and P. Connolly, 2019: The fall speed variability of similarly sized ice particle aggregates. J. Appl. Meteor. Climatol., 58, 17511761, https://doi.org/10.1175/JAMC-D-18-0291.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2020: The MOSAiC expedition: A year drifting with the Arctic sea ice. NOAA Arctic Report Card 2020, 8 pp., https://doi.org/10.25923/9g3v-xh92.

  • Vázquez-Martín, S., T. Kuhn, and A. Eliasson, 2021: Shape dependence of snow crystal fall speed. Atmos. Chem. Phys., 21, 75457565, https://doi.org/10.5194/acp-21-7545-2021.

    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., and F. Fabry, 2018: Contrasting polarimetric observations of stratiform riming and nonriming events. J Appl. Meteor. Climatol, 57, 457476, https://doi.org/10.1175/JAMC-D-16-0370.1.

    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, L. F. Bliven, W. Petersen, A. Harri, and V. Chandrasekar, 2017: Microphysical properties of snow and their link to ZeS relations during BAECC 2014. J. Appl. Meteor. Climatol., 56, 15611582, https://doi.org/10.1175/JAMC-D-16-0379.1.

    • Search Google Scholar
    • Export Citation
  • Ye, B. Y., and G. W. Lee, 2021: Vertical structure of ice clouds and vertical air motion from vertically pointing cloud radar measurements. Remote Sens., 13, 4349, https://doi.org/10.3390/rs13214349.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 626 626 19
Full Text Views 195 195 11
PDF Downloads 226 226 16