Characteristics of Lake-Effect Precipitation over the Black River Valley and Western Adirondack Mountains

W. James Steenburgh aDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1028-4230
,
Julie A. Cunningham aDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
bNOAA/National Weather Service Forecast Office, Salt Lake City, Utah

Search for other papers by Julie A. Cunningham in
Current site
Google Scholar
PubMed
Close
,
Philip T. Bergmaier cWyoming NASA Space Grant Consortium, University of Wyoming, Laramie, Wyoming

Search for other papers by Philip T. Bergmaier in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts dDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
, and
Peter Veals aDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Peter Veals in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks.

Significance Statement

Inland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft.

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jim Steenburgh, jim.steenburgh@utah.edu

Abstract

Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks.

Significance Statement

Inland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft.

This article is included in the Ontario Winter Lake-effect Systems (OWLeS) Special Collection.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jim Steenburgh, jim.steenburgh@utah.edu
Save
  • Baxter, M. A., C. E. Graves, and J. T. Moore, 2005: A climatology of snow-to-liquid ratio for the contiguous United States. Wea. Forecasting, 20, 729744, https://doi.org/10.1175/WAF856.1.

    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., B. Geerts, L. S. Campbell, and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 24372459, https://doi.org/10.1175/MWR-D-16-0462.1.

    • Search Google Scholar
    • Export Citation
  • Black River Watershed Management Plan, 2010: Part I: Watershed characterization, recommendations, and implementation. Final Rep., 220 pp., https://tughill.org/wp-content/uploads/2011/10/7BRWFinalDocumentPartI-May2010.pdf.

  • Brady, R. H., and J. S. Waldstreicher, 2001: Observations of mountain wave-induced precipitation shadows over northeast Pennsylvania. Wea. Forecasting, 16, 281300, https://doi.org/10.1175/1520-0434(2001)016<0281:OOMWIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1983: The Midwest snow storm of 8–11 December 1977. Mon. Wea. Rev., 111, 253272, https://doi.org/10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and Coauthors, 2020: A technical overview of the New York State Mesonet standard network. J. Atmos. Oceanic Technol., 37, 18271845, https://doi.org/10.1175/JTECH-D-19-0220.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., T. A. Niziol, N. R. Donaldson, P. I. Joe, and V. T. Wood, 2007: Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part III: Simulations of shallow convective activity over and around Lake Ontario. Wea. Forecasting, 22, 839852, https://doi.org/10.1175/WAF1019.1.

    • Search Google Scholar
    • Export Citation
  • Byrd, G. P., R. A. Anstett, J. E. Heim, and D. M. Usinski, 1991: Mobile sounding observations of lake-effect snow bands in western and central New York. Mon. Wea. Rev., 119, 23232332, https://doi.org/10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, https://doi.org/10.1175/MWR-D-15-0412.1.

    • Search Google Scholar
    • Export Citation
  • Chater, A. M., and A. P. Sturman, 1998: Atmospheric conditions influencing the spillover of rainfall to lee of the Southern Alps, New Zealand. Int. J. Climatol., 18, 7792, https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, https://doi.org/10.1029/95JC03796.

    • Search Google Scholar
    • Export Citation
  • Eipper, D. T., G. S. Young, S. J. Greybush, S. Saslo, T. D. Sikora, and R. D. Clark, 2018: Predicting the inland penetration of long-lake-axis-parallel snowbands. Wea. Forecasting, 33, 14351451, https://doi.org/10.1175/WAF-D-18-0033.1.

    • Search Google Scholar
    • Export Citation
  • Eipper, D. T., S. J. Greybush, G. S. Young, S. Saslo, T. D. Sikora, and R. D. Clark, 2019: Lake-effect snowbands in baroclinic environments. Wea. Forecasting, 34, 16571674, https://doi.org/10.1175/WAF-D-18-0191.1.

    • Search Google Scholar
    • Export Citation
  • Frech, M., and J. Seltmann, 2017: The influence of wind turbines on dualpol radar moments and products. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 8 pp., https://ams.confex.com/ams/38RADAR/mediafile/Manuscript/Paper320487/ams_radar2017_frech_seltmann_WEA_4.pdf.

  • Fujisaki-Manome, A., D. M. Wright, G. E. Mann, E. J. Anderson, P. Chu, C. Jablonowski, and S. G. Benjamin, 2022: Forecasting lake-/sea-effect snowstorms, advancement, and challenges. Wiley Interdiscip. Rev.: Water, 9, e1594, https://doi.org/10.1002/wat2.1594.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., C. Grasmick, R. M. Rauber, T. J. Zaremba, L. Xue, and K. Friedrich, 2023: Vertical motions forced by small-scale terrain and cloud microphysical response in extratropical precipitation systems. J. Atmos. Sci., 80, 649669, https://doi.org/10.1175/JAS-D-22-0161.1.

    • Search Google Scholar
    • Export Citation
  • Gowan, T. M., W. J. Steenburgh, and J. R. Minder, 2021: Downstream evolution and coastal-to-inland transition of landfalling lake-effect systems. Mon. Wea. Rev., 149, 10231040, https://doi.org/10.1175/MWR-D-20-0253.1.

    • Search Google Scholar
    • Export Citation
  • Gowan, T. M., W. J. Steenburgh, and J. R. Minder, 2022: Orographic effects on landfalling lake-effect systems. Mon. Wea. Rev., 150, 20132031, https://doi.org/10.1175/MWR-D-21-0314.1.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and I. Stiperski, 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 12051228, https://doi.org/10.1175/2008JAS2885.1.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hill, J. D., 1971: Snow squalls in the lee of Lake Erie and Ontario: A review of the literature. NOAA Tech. Memo. NWS ER-43, 20 pp., https://repository.library.noaa.gov/view/noaa/6330.

  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, https://doi.org/10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., and R. R. Braham, 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, https://doi.org/10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoyt, W. G., and W. B. Langbein, 1955: Floods. Princeton University Press, 469 pp.

  • Jones, E. A., C. E. Lang, and N. F. Laird, 2022: The contribution of lake-effect snow to annual snowfall totals in the vicinity of Lakes Erie, Michigan, and Ontario. Front. Water, 4, 782910, https://doi.org/10.3389/frwa.2022.782910.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1982: A single Doppler radar study of horizontal-roll convection in a lake-effect snow storm. J. Atmos. Sci., 39, 15211531, https://doi.org/10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, https://doi.org/10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1986: Mesoscale frequencies and seasonal snowfalls for different types of Lake Michigan snow storms. J. Climate Appl. Meteor., 25, 308312, https://doi.org/10.1175/1520-0450(1986)025<0308:MFASSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snowstorms. Bound.-Layer Meteor., 63, 293315, https://doi.org/10.1007/BF00710463.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., N. F. Laird, M. R. Hjelmfelt, R. G. Derickson, and K. A. Cooper, 1999: Transitions in boundary layer meso-γ convective structures: An observational case study. Mon. Wea. Rev., 127, 28952909, https://doi.org/10.1175/1520-0493(1999)127<2895:TIBLMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-effect Systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., L. Bard, L. Stoecker, and B. Geerts, 2018: Influence of Lake Erie on a Lake Ontario lake-effect snowstorm. J. Appl. Meteor. Climatol., 57, 20192033, https://doi.org/10.1175/JAMC-D-17-0349.1.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., and D. A. R. Kristovich, 2002: Variations of sensible and latent heat fluxes from a Great Lakes buoy and associated synoptic weather patterns. J. Hydrometeor., 3, 312, https://doi.org/10.1175/1525-7541(2002)003<0003:VOSALH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., and D. A. R. Kristovich, 2004: Comparison of observations with idealized model results for a method to resolve winter lake-effect mesoscale morphology. Mon. Wea. Rev., 132, 10931103, https://doi.org/10.1175/1520-0493(2004)132<1093:COOWIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, and J. E. Walsh, 2003: Model simulations examining the relationship of lake-effect morphology to lake shape, wind direction, and wind speed. Mon. Wea. Rev., 131, 21022111, https://doi.org/10.1175/1520-0493(2003)131<2102:MSETRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, C. E., J. M. McDonald, L. Gaudet, D. Doeblin, E. A. Jones, and N. F. Laird, 2018: The influence of a lake-to-lake Connection from Lake Huron on the lake-effect snowfall in the vicinity of Lake Ontario. J. Appl. Meteor. Climatol., 57, 14231439, https://doi.org/10.1175/JAMC-D-17-0225.1.

    • Search Google Scholar
    • Export Citation
  • Langbein, W. B., and Coauthors, 1947: Major winter and nonwinter floods in selected basins in New York and Pennsylvania. USGS Water-Supply Paper 915, 139 pp., https://pubs.usgs.gov/wsp/0915/report.pdf.

  • Mass, C., N. Johnson, M. Warner, and R. Vargas, 2015: Synoptic control of cross-barrier precipitation ratios for the Cascade Mountains. J. Hydrometeor., 16, 10141028, https://doi.org/10.1175/JHM-D-14-0149.1.

    • Search Google Scholar
    • Export Citation
  • May, R. M., and Coauthors, 2022: MetPy: A meteorological Python library for data analysis and visualization. Bull. Amer. Meteor. Soc., 103, E2273E2284, https://doi.org/10.1175/BAMS-D-21-0125.1.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. G. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, https://doi.org/10.1175/MWR-D-15-0117.1.

    • Search Google Scholar
    • Export Citation
  • Muller, R. A., 1966: Snowbelts of the Great Lakes. Weatherwise, 19, 248255, https://doi.org/10.1080/00431672.1966.10544204.

  • Nakai, S., and T. Endoh, 1995: Observation of snowfall and airflow over a low mountain barrier. J. Meteor. Soc. Japan, 73, 183199, https://doi.org/10.2151/jmsj1965.73.2_183.

    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2022: Northeast annual average snowfall. NOAA, accessed 5 November 2022, https://www.weather.gov/btv/winter.

  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, https://doi.org/10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norin, L., and G. Haase, 2012: Doppler weather radars and wind turbines. Doppler Radar Observations—Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications, J. Bech, Ed., InTechOpen, 333–354.

  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, https://doi.org/10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., Jr., and R. R. Braham Jr., 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482491, https://doi.org/10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peace, R. L., and R. B. Sykes, 1966: Mesoscale study of a lake effect snowstorm. Mon. Wea. Rev., 94, 495507, https://doi.org/10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierre, A., S. Jutras, C. Smith, J. Kochendorfer, V. Fortin, and F. Anctil, 2019: Evaluation of catch efficiency transfer functions for unshielded and single-Alter-shielded solid precipitation measurements. J. Atmos. Oceanic Technol., 36, 865881, https://doi.org/10.1175/JTECH-D-18-0112.1.

    • Search Google Scholar
    • Export Citation
  • Radar Operations Center, 2022: How rotating wind turbine blades impact the NEXRAD Doppler weather radar. NOAA/NWS, accessed 24 October 2022, https://www.roc.noaa.gov/WSR88D/WindFarm/TurbinesImpactOn.aspx?wid=dev.

  • Ralph, F. M., P. J. Neiman, D. E. Kingsmill, P. O. G. Persson, A. B. White, E. T. Strem, E. D. Andrews, and R. C. Antweiler, 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4, 12431264, https://doi.org/10.1175/1525-7541(2003)004<1243:TIOAPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., and Coauthors, 1993: The Lake Ontario Winter Storms (LOWS) project. Bull. Amer. Meteor. Soc., 74, 18281850, https://doi.org/10.1175/1520-0477-74-10-1828.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., and M. B. Baker, 2006: Microphysical and geometrical controls on the pattern of orographic precipitation. J. Atmos. Sci., 63, 861880, https://doi.org/10.1175/JAS3619.1.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 1993: Impacts of severe winter weather during December 1989 in the Lake Erie snowbelt. J. Climate, 6, 759767, https://doi.org/10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siler, N., and D. Durran, 2016: What causes weak orographic rain shadows? Insights from case studies in the Cascades and idealized simulations. J. Atmos. Sci., 73, 40774099, https://doi.org/10.1175/JAS-D-15-0371.1.

    • Search Google Scholar
    • Export Citation
  • Siler, N., G. Roe, and D. Durran, 2013: On the dynamical causes of variability in the rain-shadow effect: A case study of the Washington Cascades. J. Hydrometeor., 14, 122139, https://doi.org/10.1175/JHM-D-12-045.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, https://doi.org/10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, J., 2023: Secrets of the Greatest Snow on Earth. 2nd ed. Utah State University Press, 213 pp.

  • Steenburgh, W. J., and L. S. Campbell, 2017: The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Wea. Rev., 145, 24212436, https://doi.org/10.1175/MWR-D-16-0460.1.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., R. Hamilton, J. Keeler, and R. E. Orville, 2009: Lake-effect thunderstorms in the lower Great Lakes. J. Appl. Meteor. Climatol., 48, 889902, https://doi.org/10.1175/2008JAMC1935.1.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., and Coauthors, 2013: Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel–lake-effect storms by the Doppler on wheels. Mon. Wea. Rev., 141, 28212840, https://doi.org/10.1175/MWR-D-12-00226.1.

    • Search Google Scholar
    • Export Citation
  • Stockham, A. J., D. M. Schultz, J. G. Fairman Jr., and A. P. Draude, 2018: Quantifying the rain-shadow effect: Results from the Peak District, British Isles. Bull. Amer. Meteor. Soc., 99, 777790, https://doi.org/10.1175/BAMS-D-17-0256.1.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., 2001: WSR-88D performance in northern Utah during the winter of 1998–1999. Part I: Adjustments to precipitation estimates. NOAA/Western Regional Tech. Attachment 01-03, 5 pp.

  • Veals, P. G., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, https://doi.org/10.1175/MWR-D-15-0009.1.

    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, and L. S. Campbell, 2018: Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Mon. Wea. Rev., 146, 17451762, https://doi.org/10.1175/MWR-D-17-0385.1.

    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, S. Nakai, and S. Yamaguchi, 2019: Factors affecting the inland and orographic enhancement of sea-effect snowfall in the Hokuriku Region of Japan. Mon. Wea. Rev., 147, 31213143, https://doi.org/10.1175/MWR-D-19-0007.1.

    • Search Google Scholar
    • Export Citation
  • Veals, P. G., W. J. Steenburgh, S. Nakai, and S. Yamaguchi, 2020: Intrastorm variability of the inland and orographic enhancement of a sea-effect snowstorm in the Hokuriku Region of Japan. Mon. Wea. Rev., 148, 25272548, https://doi.org/10.1175/MWR-D-19-0390.1.

    • Search Google Scholar
    • Export Citation
  • Veron, F., W. K. Melville, and L. Lenain, 2008: Wave-coherent air–sea heat flux. J. Phys. Oceanogr., 38, 788802, https://doi.org/10.1175/2007JPO3682.1.

    • Search Google Scholar
    • Export Citation
  • Villani, J. P., M. L. Jurewicz Sr., and K. Reinhold, 2017: Forecasting the inland extent of lake effect snow bands downwind of Lake Ontario. J. Oper. Meteor., 5, 5370, https://doi.org/10.15191/nwajom.2017.0505.

    • Search Google Scholar
    • Export Citation
  • Welsh, D., B. Geerts, and P. Bergmaier, 2014: An airborne profiling view of lake-effect snow circulations transitioning from an open water surface to moderate terrain. 16th Conf. on Mountain Meteorology, San Diego, CA, Amer. Meteor. Soc., P49, https://ams.confex.com/ams/16MountMet/webprogram/Paper252060.html.

  • Zagrodnik, J. P., L. McMurdie, and R. Conrick, 2021: Microphysical enhancement processes within stratiform precipitation on the barrier and sub-barrier scale of the Olympic Mountains. Mon. Wea. Rev., 149, 503520, https://doi.org/10.1175/MWR-D-20-0164.1.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005: The impact of lee-side stratification on the spatial distribution of orographic precipitation. Quart. J. Roy. Meteor. Soc., 131, 10751091, https://doi.org/10.1256/qj.04.118.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022: Vertical motions in orographic cloud systems over the Payette River basin. Part I: Recovery of vertical motions and their uncertainty from airborne Doppler radial velocity measurements. J. Appl. Meteor. Climatol., 61, 17071725, https://doi.org/10.1175/JAMC-D-21-0228.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., V. M. Melnikov, and A. V. Ryzhkov, 2006: Correlation coefficients between horizontally and vertically polarized returns from ground clutter. J. Atmos. Oceanic Technol., 23, 381394, https://doi.org/10.1175/JTECH1856.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 553 553 50
Full Text Views 183 183 9
PDF Downloads 215 215 11