Airborne Observations of Highly Variable and Complex Freezing Drizzle and Mixed-Phase Environments

Spencer Faber aNSF National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Spencer Faber in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0005-0702-4528
,
Ben Bernstein bLeading Edge Atmospherics, Longmont, Colorado

Search for other papers by Ben Bernstein in
Current site
Google Scholar
PubMed
Close
,
Scott Landolt aNSF National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Scott Landolt in
Current site
Google Scholar
PubMed
Close
,
Darcy Jacobson aNSF National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Darcy Jacobson in
Current site
Google Scholar
PubMed
Close
,
Stephanie DiVito cFederal Aviation Administration, Atlantic City, New Jersey

Search for other papers by Stephanie DiVito in
Current site
Google Scholar
PubMed
Close
,
Mengistu Wolde dNational Research Council Canada, Ottawa, Ontario, Canada

Search for other papers by Mengistu Wolde in
Current site
Google Scholar
PubMed
Close
,
Alexei Korolev eEnvironment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Alexei Korolev in
Current site
Google Scholar
PubMed
Close
,
Ivan Heckman eEnvironment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Ivan Heckman in
Current site
Google Scholar
PubMed
Close
,
Leonid Nichman dNational Research Council Canada, Ottawa, Ontario, Canada

Search for other papers by Leonid Nichman in
Current site
Google Scholar
PubMed
Close
, and
Cuong Nguyen dNational Research Council Canada, Ottawa, Ontario, Canada

Search for other papers by Cuong Nguyen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Airframe icing caused by interactions with supercooled cloud droplets and precipitation can pose a risk to aviation operations and life safety. The In-Cloud Icing and Large-drop Experiment (ICICLE) was conducted in January–March 2019 to capture measurements in freezing conditions in support of the Federal Aviation Administration (FAA) Terminal Area Icing Weather Information for NextGen (TAIWIN) program. The National Research Council of Canada’s Convair-580 research aircraft fulfilled the airborne data collection requirements for the ICICLE campaign and sampled icing clouds and atmospheric conditions over the midwestern United States. ICICLE flight 18, conducted on 17 February 2019, collected cloud and precipitation measurements during a widespread storm that generated supercooled small drops and freezing drizzle (FZDZ) within both liquid and mixed-phase regions. Supercooled liquid water content (LWC) typically ranged 0.30–0.45 g m−3 and exceeded 0.70 g m−3 in one instance. Maximum FZDZ diameters of 300–400 μm were commonly sampled near the base of clouds. Missed approaches performed at four Illinois airfields provided measurements of conditions from near ground level to above cloud top and supplied information regarding FZDZ formation and evolution. FZDZ was found to form at altitudes featuring relatively high LWC and sufficiently low droplet number concentrations. FZDZ formation zones were sometimes collocated with regions of atmospheric instability and/or wind shear. Flight through highly variable supercooled cloud droplet and FZDZ conditions resulted in significant Convair-580 airframe icing, highlighting the risk that icing conditions can pose to aircraft safety.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Spencer Faber, sfaber34@gmail.com

Abstract

Airframe icing caused by interactions with supercooled cloud droplets and precipitation can pose a risk to aviation operations and life safety. The In-Cloud Icing and Large-drop Experiment (ICICLE) was conducted in January–March 2019 to capture measurements in freezing conditions in support of the Federal Aviation Administration (FAA) Terminal Area Icing Weather Information for NextGen (TAIWIN) program. The National Research Council of Canada’s Convair-580 research aircraft fulfilled the airborne data collection requirements for the ICICLE campaign and sampled icing clouds and atmospheric conditions over the midwestern United States. ICICLE flight 18, conducted on 17 February 2019, collected cloud and precipitation measurements during a widespread storm that generated supercooled small drops and freezing drizzle (FZDZ) within both liquid and mixed-phase regions. Supercooled liquid water content (LWC) typically ranged 0.30–0.45 g m−3 and exceeded 0.70 g m−3 in one instance. Maximum FZDZ diameters of 300–400 μm were commonly sampled near the base of clouds. Missed approaches performed at four Illinois airfields provided measurements of conditions from near ground level to above cloud top and supplied information regarding FZDZ formation and evolution. FZDZ was found to form at altitudes featuring relatively high LWC and sufficiently low droplet number concentrations. FZDZ formation zones were sometimes collocated with regions of atmospheric instability and/or wind shear. Flight through highly variable supercooled cloud droplet and FZDZ conditions resulted in significant Convair-580 airframe icing, highlighting the risk that icing conditions can pose to aircraft safety.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Spencer Faber, sfaber34@gmail.com
Save
  • Ashenden, R., and J. Marwitz, 1998: Characterizing the supercooled large droplet environment with corresponding turboprop aircraft response. J. Aircr., 35, 912920, https://doi.org/10.2514/2.2386.

    • Search Google Scholar
    • Export Citation
  • Bala, K., M., Wolde, M., Bastian, N., Bliankinshtein, 2020: NRC Convair 580 Aircraft State Parameters, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 12 September 2024, https://doi.org/10.26023/PCSX-97D8-4S0Y.

  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., W. Strapp, and J. E. Dye, 1985: Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol., 2, 626632, https://doi.org/10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

  • Beard, K. V., and H. T. Ochs III, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor., 32, 608625, https://doi.org/10.1175/1520-0450(1993)032<0608:WRIAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proc. Fifth Assembly U.G.G.I., Lisbon, Portugal, International Union of Geodesy and Geophysics, 156–180.

  • Bernstein, B., and Coauthors, 2021: The in-cloud icing and large-drop experiment science and operations plan. FAA Tech. Rep. DOT/FAA/TC-21/29, 174 pp., https://doi.org/10.21949/1524472.

  • Bernstein, B. C., F. McDonough, M. K. Politovich, B. G. Brown, T. P. Ratvasky, D. R. Miller, C. A. Wolff, and G. Cunning, 2005: Current icing potential: Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44, 969986, https://doi.org/10.1175/JAM2246.1.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., C. A. Wolff, and F. McDonough, 2007: An inferred climatology of icing conditions aloft, including supercooled large drops. Part I: Canada and the continental United States. J. Appl. Meteor. Climatol., 46, 18571878, https://doi.org/10.1175/2007JAMC1607.1.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., R. M. Rasmussen, F. McDonough, and C. Wolff, 2019: Keys to differentiating between small- and large-drop icing conditions in continental clouds. J. Appl. Meteor. Climatol., 58, 19311953, https://doi.org/10.1175/JAMC-D-18-0038.1.

    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596603, https://doi.org/10.1175/1520-0493(1980)108<0596:TOUOUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bragg, M. B., A. P. Broeren, and L. A. Blumenthal, 2005: Iced-airfoil aerodynamics. Prog. Aerosp. Sci., 41, 323362, https://doi.org/10.1016/j.paerosci.2005.07.001.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., T. Bourrianne, A. A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, 1998: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic Technol., 15, 10771090, https://doi.org/10.1175/1520-0426(1998)015<1077:IODSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cober, S., B. Bernstein, R. Jeck, E. Hill, G. Isaac, J. Riley, and A. Shah, 2009: Data and analysis for the development of an engineering standard for supercooled large drop conditions. US Department of Transportation Final Rep. DOT/FAA/AR-09/10, 89 pp., https://www.yumpu.com/en/document/read/27075640/data-and-analysis-for-the-development-of-an-engineering-faa/3.

  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor. Climatol., 51, 265284, https://doi.org/10.1175/JAMC-D-11-022.1.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 1995: Aircraft icing measurements in East Coast winter storms. J. Appl. Meteor., 34, 88100, https://doi.org/10.1175/1520-0450-34.1.88.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., S. E. Yuter, R. Wood, and C. S. Bretherton, 2007: The three-dimensional structure and kinematics of drizzling stratocumulus. Mon. Wea. Rev., 135, 37673784, https://doi.org/10.1175/2007MWR1944.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol., 5, 823832, https://doi.org/10.1175/1520-0426(1988)005<0823:EOCOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., W. R. Sand, M. K. Politovich, and D. L. Veal, 1984: Effects of icing on performance of a research airplane. J. Aircr., 21, 708715, https://doi.org/10.2514/3.45018.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DiVito, S., B. Bernstein, J. Riley, D. Sims, S. Landolt, J. Haggerty, M. Wolde, and A. Korolev, 2019: In-Cloud ICing and Large-drop Experiment—Program overview. SAE Int. Icing Conf., Minneapolis, MN, AIAA, 32 pp., https://www.sae.org/binaries/content/assets/cm/content/attend/2019/icing/icing_19_event_guide.pdf.

  • DiVito, S., and Coauthors, 2023: A status update on the FAA Terminal Area Icing Weather Information for NextGen (TAIWIN) project and capability demonstrations. 23rd Conf. on Aviation, Range, and Aerospace Meteorology, Denver, CO, Amer. Meteor. Soc., 8.1, https://ams.confex.com/ams/103ANNUAL/meetingapp.cgi/Paper/422106.

  • Dye, J. E., and D. Baumgardner, 1984: Evaluation of the Forward Scattering Spectrometer Probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol., 1, 329344, https://doi.org/10.1175/1520-0426(1984)001<0329:EOTFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • FAA, 1999: Appendix C. Airworthiness standard: Transport category airplanes. Part 25, Aeronautics and Space, Title 14, U.S. Code of Federal Regulations, National Archives and Records Administration, 536–543, https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25.

  • FAA, 2015: Airplane and engine certification requirements in supercooled large drop, mixed phase and ice crystal icing conditions; final rule. Parts 25 and 33, Aeronautics and Space, Title 14, U.S. Code of Federal Regulations, National Archives and Records Administration, https://www.federalregister.gov/documents/2014/11/04/2014-25789/airplane-and-engine-certification-requirements-in-supercooled-large-drop-mixed-phase-and-ice-crystal.

  • Faber, S., J. R. French, and R. Jackson, 2018: Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP). Atmos. Meas. Tech., 11, 36453659, https://doi.org/10.5194/amt-11-3645-2018.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121133.

  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Search Google Scholar
    • Export Citation
  • Green, S. D., 2006: A study of U.S. inflight icing accidents and incidents, 1978 to 2002. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, AIAA 2006-82, https://doi.org/10.2514/6.2006-82.

  • Green, S. D., 2015: The Icemaster Database and an analysis of aircraft aerodynamic icing accidents and incidents. TRID Final Rep. DOT/FAA/TC-14/44, 135 pp., http://www.tc.faa.gov/its/worldpac/techrpt/tc14-44r1.pdf.

  • Holroyd, E. W., III, 1987: Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol., 4, 498511, https://doi.org/10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Isaac, G., S. Cober, A. Korolev, J. Strapp, and A. Tremblay, 1999: Canadian freezing drizzle experiment. 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, AIAA-99-0492, https://doi.org/10.2514/6.1999-492.

  • Isaac, G. A., S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, and D. L. Marcotte, 2001: Recent Canadian research on aircraft in-flight icing. Can. Aeronaut. Space J., 47, 213221.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., S. G. Cober, A. V. Korolev, J. W. Strapp, and A. Tremblay, 2005: First results from the Alliance Icing Research Study II. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, AIAA 2005-252, https://doi.org/10.2514/6.2005-252.

  • Jensen, J. B., and H. Granek, 2002: Optoelectronic simulation of the PMS 260X optical array probe and application to drizzle in a marine stratocumulus. J. Atmos. Oceanic Technol., 19, 568585, https://doi.org/10.1175/1520-0426(2002)019<0568:OSOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, A. R., and W. Lewis, 1949: Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment. National Advisory Committee for Aeronautics Tech. Note 1855, 15 pp., https://ntrs.nasa.gov/api/citations/19930082528/downloads/19930082528.pdf.

  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds—Their Formation, Optical Properties, and Effects, P. Hobbs, Ed., Academic Press, 15–89.

  • Korolev, A., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, https://doi.org/10.1175/JTECH1980.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 10481057, https://doi.org/10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and P. R. Field, 2015: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech., 8, 761777, https://doi.org/10.5194/amt-8-761-2015.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and I. Heckman, 2020a: NRC Convair 580 Composite Liquid and Ice Size Distribution Data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 12 September 2024, https://doi.org/10.26023/7BZP-NGPY-WG0B.

  • Korolev, A., and I. Heckman, 2020b. NRC Convair 580 Bulk Parameters, version 0.4. UCAR/NCAR–Earth Observing Laboratory, accessed 12 September 2024, https://doi.org/10.26023/R6A2-G92Q-CF0S.

  • Korolev, A., J. W. Strapp, G. A. Isaac, and E. Emery, 2013: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, https://doi.org/10.1175/JTECH-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57, 16751685, https://doi.org/10.1175/1520-0469(2000)057<1675:DGDTHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., S. V. Kuznetsov, Y. E. Makarov, and V. S. Novikov, 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol., 8, 514522, https://doi.org/10.1175/1520-0426(1991)008<0514:EOMOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998a: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, https://doi.org/10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998b: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, https://doi.org/10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Lance, S., 2012: Coincidence errors in a Cloud Droplet Probe (CDP) and a Cloud and Aerosol Spectrometer (CAS), and the improved performance of a modified CDP. J. Atmos. Oceanic Technol., 29, 15321541, https://doi.org/10.1175/JTECH-D-11-00208.1.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, https://doi.org/10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Landolt, S. D., J. S. Lave, D. Jacobson, A. Gaydos, S. DiVito, and D. Porter, 2019: The impacts of automation on present weather–type observing capabilities across the conterminous United States. J. Appl. Meteor. Climatol., 58, 26992715, https://doi.org/10.1175/JAMC-D-19-0170.1.

    • Search Google Scholar
    • Export Citation
  • Landolt, S. D., and Coauthors, 2024: Aircraft icing research advances in the terminal area using ICICLE field campaign data. 24th Conf. on Aviation, Range, and Aerospace Meteorology, Baltimore, MD, Amer. Meteor. Soc., 3.1, https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/439594.

  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, https://doi.org/10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, https://doi.org/10.1029/2000JD900789.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Le Bot, C., 2004: SIGMA: System of Icing Geographic Identification in Meteorology for Aviation. 11th Conf. on Aviation Range and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P6.5, http://ams.confex.com/ams/pdfpapers/81704.pdf.

  • Lewis, W., 1951: Meteorological aspects of aircraft icing. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1197–1203.

  • Majewski, A., and J. R. French, 2020: Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud. Atmos. Chem. Phys., 20, 50355054, https://doi.org/10.5194/acp-20-5035-2020.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J., M. Politovich, B. Bernstein, F. Ralph, P. Neiman, R. Ashenden, and J. Bresch, 1997: Meteorological conditions associated with the ATR-72 aircraft accident near Roselawn, Indiana on 31 October 1994. Bull. Amer. Mer. Soc., 78, 4152, https://doi.org/10.1175/1520-0477(1997)078<0041:MCAWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDonough, F., B. Bernstein, M. Politovich, and C. Wolff, 2004: The forecast icing potential algorithm. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, AIAA 2004-231, https://doi.org/10.2514/6.2004-231.

  • McFarquhar, G. M., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0007.1.

  • Minder, J. R., and Coauthors, 2023: P-type processes and predictability: The winter precipitation type research multiscale experiment (WINTRE-MIX). Bull. Amer. Meteor. Soc., 104, E1469E1492, https://doi.org/10.1175/BAMS-D-22-0095.1.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C., K. Brown, R. Bowyer, P. Gill, and D. Suri, 2019: Development and evaluation of in-flight icing index forecast for aviation. Wea. Forecasting, 34, 731750, https://doi.org/10.1175/WAF-D-18-0177.1.

    • Search Google Scholar
    • Export Citation
  • Nevzorov, A. N., 1980: Aircraft cloud water content meter. Proc. Eighth Conf. on Cloud Physics, Clermond-Ferrand, France, International Commission on Clouds and Precipitation, 701–703.

  • Newton, D. W., 1978: An integrated approach to the problem of aircraft icing. J. Aircr., 15, 374380, https://doi.org/10.2514/3.58372.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C., and M. Wolde, 2020. NRC Convair 580 Airborne W-Band (NAW) Radar Data and Imagery, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 12 September 2024, https://doi.org/10.26023/PBVG-0S4X-3D05.

  • Nguyen, C. M., M. Wolde, A. Battaglia, L. Nichman, N. Bliankinshtein, S. Haimov, K. Bala, and D. Schuettemeyer, 2022: Coincident in situ and triple-frequency radar airborne observations in the Arctic. Atmos. Meas. Tech., 15, 775795, https://doi.org/10.5194/amt-15-775-2022.

    • Search Google Scholar
    • Export Citation
  • NTSB, 2002: National Transportation Safety Board aviation accident final report. Aviation Accident Final Rep. DCA01MA031, 9 pp., https://reports.aviation-safety.net/2001/20010319-0_E120_N266CA.pdf.

  • NTSB, 2006: Aviation incident data summary. NTSB Tech. Rep. LAX06IA076, 15 pp., https://www.ntsb.gov/_layouts/ntsb.aviation/brief2.aspx?ev_id520060109X00033&ntsbno5LAX06IA076&akey51.

  • NTSB, 2007: Crash during approach to Landing, Circuit City Stores, Inc. Cessna Citation 560, N500AT, Pueblo, Colorado, February 16, 2005. Aircraft Accident Rep. NTSB/AAR-07/02, 86 pp., https://ntsb.gov/investigations/AccidentReports/Reports/AAR0702.pdf.

  • Pinnick, R. G., D. M. Garvey, and L. D. Duncan, 1981: Calibration of Knollenberg FSSP light-scattering counters for measurement of cloud droplets. J. Appl. Meteor., 20, 10491057, https://doi.org/10.1175/1520-0450(1981)020<1049:COKFLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pobanz, B. M., J. D. Marwitz, and M. K. Politovich, 1994: Conditions associated with large-drop regions. J. Appl. Meteor., 33, 13661372, https://doi.org/10.1175/1520-0450(1994)033<1366:CAWLDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., 1989: Aircraft icing caused by large supercooled droplets. J. Appl. Meteor., 28, 856868, https://doi.org/10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860, https://doi.org/10.1175/1520-0469(2002)059<0837:FDFISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ratvasky, T. P., B. P. Barnhart, and S. Lee, 2010: Current methods for modeling and simulating icing effects on aircraft performance, stability and control. J. Aircr., 47, 201211, https://doi.org/10.2514/1.44650.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, D. Miller, and K. E. Kunkel, 2001: A synoptic weather pattern and sounding-based climatology of freezing precipitation in the United States east of the Rocky Mountains. J. Appl. Meteor., 40, 17241747, https://doi.org/10.1175/1520-0450(2001)040<1724:ASWPAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sand, W. R., W. A. Cooper, M. K. Politovich, and D. L. Veal, 1984: Icing conditions encountered by a research aircraft. J. Climate Appl. Meteor., 23, 14271440, https://doi.org/10.1175/0733-3021-23.10.1427.

    • Search Google Scholar
    • Export Citation
  • Shakirova, A., and Coauthors, 2022: Multivariable characterization of atmospheric environment with data collected in flight. Atmosphere, 13, 1715, https://doi.org/10.3390/atmos13101715.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18, 11501170, https://doi.org/10.1175/1520-0426(2001)018<1150:LMOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2003: Wind tunnel measurements of the response of hot-wire liquid water content instruments to large droplets. J. Atmos. Oceanic Technol., 20, 791806, https://doi.org/10.1175/1520-0426(2003)020<0791:WTMOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tafferner, A., T. Hauf, C. Leifeld, T. Hafner, H. Leykauf, and U. Voigt, 2003: ADWICE: Advanced diagnosis and warning system for aircraft icing environments. Wea. Forecasting, 18, 184203, https://doi.org/10.1175/1520-0434(2003)018<0184:AADAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1988: An example of the behavior of an aircraft with accumulated ice: Latent instability. J. Appl. Meteor., 27, 10931108, https://doi.org/10.1175/1520-0450(1988)027<1093:AEOTBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2009: Single‐scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304, https://doi.org/10.1002/qj.378.

    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. Leipzig, 331 pp.

  • Williams, E. R., M. F. Donovan, D. J. Smalley, R. G. Hallowell, E. Griffin, K. T. Hood, and B. J. Bennett, 2015: The 2013 Buffalo Area Icing and Radar Study (BAIRS). MIT Lincoln Laboratory Project Rep. ATC-419, 154 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/2018-12/Williams_2015_ATC-419_RR-402557(1).pdf.

  • Wolde, M., and A. Pazmany, 2005: NRC dual-frequency airborne radar for atmospheric research. 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.9, https://ams.confex.com/ams/pdfpapers/96918.pdf.

  • Wolde, M., and Coauthors, 2020: In-Cloud Icing and Large-Drop Experiment (ICICLE). Part II: Airborne measurements. 20th Conf. on Aviation, Range, and Aerospace Meteorology, Boston, MA, Amer. Meteor. Soc., 13.2, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/369166.

All Time Past Year Past 30 Days
Abstract Views 26495 26495 16063
Full Text Views 383 383 190
PDF Downloads 137 137 27