Investigating Possible Urban-Induced Precipitation Variations around Louisville, Kentucky

Isaiah Kingsberry aDepartment of Geographic and Environmental Sciences, University of Louisville, Louisville, Kentucky

Search for other papers by Isaiah Kingsberry in
Current site
Google Scholar
PubMed
Close
and
Jason Naylor aDepartment of Geographic and Environmental Sciences, University of Louisville, Louisville, Kentucky

Search for other papers by Jason Naylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines ground-based precipitation observations recorded by a high-density gauge network located within approximately 40 km of the urban center of Louisville, Kentucky. An analysis of April–October events reveals that precipitation is significantly greater on the downwind side of Louisville than on the upwind side, particularly when precipitation systems have a westerly component to their motion. The mean difference between downwind and upwind precipitation across all events is 20%. This value is smaller for widespread precipitation events (i.e., most or all gauges detect precipitation) and is larger for isolated events (i.e., rain detected by one-half of the gauges or fewer). The largest and most significant differences between upwind and downwind precipitation amounts occur in association with moist moderate, moist tropical, and transitional air masses.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jason Naylor, jason.naylor@louisville.edu.

Abstract

This study examines ground-based precipitation observations recorded by a high-density gauge network located within approximately 40 km of the urban center of Louisville, Kentucky. An analysis of April–October events reveals that precipitation is significantly greater on the downwind side of Louisville than on the upwind side, particularly when precipitation systems have a westerly component to their motion. The mean difference between downwind and upwind precipitation across all events is 20%. This value is smaller for widespread precipitation events (i.e., most or all gauges detect precipitation) and is larger for isolated events (i.e., rain detected by one-half of the gauges or fewer). The largest and most significant differences between upwind and downwind precipitation amounts occur in association with moist moderate, moist tropical, and transitional air masses.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jason Naylor, jason.naylor@louisville.edu.
Save
  • Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the southeast United States. Climatic Change, 113, 481498, https://doi.org/10.1007/s10584-011-0324-1.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., J. A. Stallins, and W. S. Ashley, 2011: Synoptic environments favourable for urban convection in Atlanta, Georgia. Int. J. Climatol., 32, 12871294, https://doi.org/10.1002/joc.2344.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, https://doi.org/10.1016/S1352-2310(99)00374-X.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., R. G. Semonin, and F. A. Huff, 1976: A hypothesis for urban rainfall anomalies. J. Appl. Meteor., 15, 544560, https://doi.org/10.1175/1520-0450(1976)015<0544:AHFURA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Debbage, N., and J. M. Shepherd, 2015: The urban heat island effect and city contiguity. Comput. Environ. Urban Syst., 54, 181194, https://doi.org/10.1016/j.compenvurbsys.2015.08.002.

    • Search Google Scholar
    • Export Citation
  • DeMarrais, G. A., 1961: Vertical temperature difference observed over an urban area. Bull. Amer. Meteor. Soc., 42, 548555, https://doi.org/10.1175/1520-0477-42.8.548.

    • Search Google Scholar
    • Export Citation
  • Diem, J. E., and D. P. Brown, 2003: Anthropogenic impacts on summer precipitation in central Arizona, U.S.A. Prof. Geogr., 55, 343355, https://doi.org/10.1111/0033-0124.5503011.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., and T. L. Mote, 2003: Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J. Appl. Meteor., 42, 12731284, https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Zhang, Z. Li, J. Hu, and D. Rosenfeld, 2020: Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation. Atmos. Chem. Phys., 20, 14 16314 182, https://doi.org/10.5194/acp-20-14163-2020.

    • Search Google Scholar
    • Export Citation
  • Forney, R. K., N. Debbage, P. Miller, and J. Uzquiano, 2022: Urban effects on weakly forced thunderstorms observed in the southeast United States. Urban Climate, 43, 101161, https://doi.org/10.1016/j.uclim.2022.101161.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, https://doi.org/10.1002/qj.2499.

    • Search Google Scholar
    • Export Citation
  • Hand, L. M., and J. M. Shepherd, 2009: An investigation of warm-season spatial rainfall variability in Oklahoma City: Possible linkages to urbanization and prevailing wind. J. Appl. Meteor. Climatol., 48, 251269, https://doi.org/10.1175/2008JAMC2036.1.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and S. A. Changnon Jr., 1973: Precipitation modification by major urban areas. Bull. Amer. Meteor. Soc., 54, 12201232, https://doi.org/10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and J. L. Vogel, 1978: Urban, topographic and diurnal effects on rainfall in the St. Louis region. J. Appl. Meteor., 17, 565577, https://doi.org/10.1175/1520-0450(1978)017<0565:UTADEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., M. C. Nichols, C. D. Barthel, and J. S. Greene, 1996: A new spatial synoptic classification: Application to air-mass analysis. Int. J. Climatol., 16, 9831004, https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<983::AID-JOC61>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., K. M. Calhoun, K. M. De Beurs, and G. M. Henebry, 2018: Effects of city size on thunderstorm evolution revealed through a multiradar climatology of the central United States. J. Appl. Meteor. Climatol., 57, 295317, https://doi.org/10.1175/JAMC-D-16-0341.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., J. Fan, J.-H. Jeong, Y. Zhang, C. R. Homeyer, and J. Wang, 2021: Urbanization-induced land and aerosol impacts on storm propagation and hail characteristics. J. Atmos. Sci., 78, 925947, https://doi.org/10.1175/JAS-D-20-0106.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and D. Niyogi, 2019: Meta-analysis of urbanization impact on rainfall modification. Sci. Rep., 9, 7301, https://doi.org/10.1038/s41598-019-42494-2.

    • Search Google Scholar
    • Export Citation
  • Loose, T., and R. D. Bornstein, 1977: Observations of mesoscale effects on frontal movement through an urban area. Mon. Wea. Rev., 105, 563571, https://doi.org/10.1175/1520-0493(1977)105<0563:OOMEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Louisville-Jefferson County Metropolitan Sewage District, 2023: Louisville MSD rain gauge. Accessed 1 June 2022, http://raingauge.louisvillemsd.org/.

  • Matson, M., E. P. Mcclain, D. F. McGinnis, and J. A. Pritchard, 1978: Satellite detection of urban heat islands. Mon. Wea. Rev., 106, 17251734, https://doi.org/10.1175/1520-0493(1978)106<1725:SDOUHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLeod, J., M. Shepherd, and C. E. Konrad II, 2017: Spatio-temporal rainfall patterns around Atlanta, Georgia and possible relationships to urban land cover. Urban Climate, 21, 2742, https://doi.org/10.1016/j.uclim.2017.03.004.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and M. A. Olson, 2004: Impact of urban effects on precipitation in high latitudes. J. Hydrometeor., 5, 409429, https://doi.org/10.1175/1525-7541(2004)005<0409:IOUEOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and A. Sexton, 2018: The relationship between severe weather warnings, storm reports, and storm cell frequency in and around several large metropolitan areas. Wea. Forecasting, 33, 13391358, https://doi.org/10.1175/WAF-D-18-0019.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and A. D. Kennedy, 2021: Variability in isolated convective activity between Louisville, Kentucky, and nearby rural locations. Earth Interact., 25, https://doi.org/10.1175/EI-D-20-0012.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and J. P. Mulholland, 2023: The impact of vertical wind shear on the outcome of interactions between squall lines and cities. J. Geophys. Res. Atmos., 128, e2022JD037237, https://doi.org/10.1029/2022JD037237.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, https://doi.org/10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., M. Lei, C. Kishtawal, P. Schmid, and M. Shepherd, 2017: Urbanization impacts on the summer heavy rainfall climatology over the eastern United States. Earth Interact., 21, https://doi.org/10.1175/EI-D-15-0045.1.

    • Search Google Scholar
    • Export Citation
  • Ochs, H., III, and R. G. Semonin, 1979: Sensitivity of a cloud microphysical model to an urban environment. J. Appl. Meteor., 18, 11181129, https://doi.org/10.1175/1520-0450(1979)018<1118:SOACMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reges, H. W., N. Doesken, J. Turner, N. Newman, A. Bergantino, and Z. Schwalbe, 2016: CoCoRaHS: The evolution and accomplishments of a volunteer rain gauge network. Bull. Amer. Meteor. Soc., 97, 18311846, https://doi.org/10.1175/BAMS-D-14-00213.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796, https://doi.org/10.1126/science.287.5459.1793.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689701, https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, https://doi.org/10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., and S. J. Burian, 2003: Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact., 7, https://doi.org/10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., 2002: The redevelopment of a weather-type classification scheme for North America. Int. J. Climatol., 22, 5168, https://doi.org/10.1002/joc.709.

    • Search Google Scholar
    • Export Citation
  • Stone, B., Jr., 2007: Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int. J. Climatol., 27, 18011807, https://doi.org/10.1002/joc.1555.

    • Search Google Scholar
    • Export Citation
  • Thielen, J., W. Wobrock, A. Gadian, P. G. Mestayer, and J.-D. Cruetin, 2000: The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the meso-γ-scale. Atmos. Res., 54, 1539, https://doi.org/10.1016/S0169-8095(00)00041-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 151 151 46
Full Text Views 82 82 8
PDF Downloads 94 94 11