A Climatology of Intensity Change and Translation Speed of Landfalling North American Tropical Cyclones between 1971 and 2020

Nicholas S. Grondin aDepartment of Environmental Studies, University of Tampa, Tampa, Florida
bDepartment of Geography and Sustainability, University of Tennessee, Knoxville, Knoxville, Tennessee

Search for other papers by Nicholas S. Grondin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6191-6643
and
Kelsey N. Ellis bDepartment of Geography and Sustainability, University of Tennessee, Knoxville, Knoxville, Tennessee

Search for other papers by Kelsey N. Ellis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we investigated the translation speed and intensity change characteristics for landfalling North American tropical cyclones (TCs) from 1971 to 2020. We calculated three variables—intensity change, mean translation speed, and translation speed change—prior to each TC landfall and investigated the climatology of these variables for seven coastal segments. We found that lower-latitude segments generally had greater positive intensity changes prior to landfall, and higher-latitude segments had greater translation speeds. Longitude primarily influenced translation speed changes, with landfalling TCs along the Atlantic coast of the United States notably accelerating prior to landfall. Temporal trends in each of these variables were inconsistent geographically, but most segments showed an increase in positive intensity changes over time, demonstrating the increasing likelihood of intensifying TCs before landfall in recent years. We defined extreme intensification and extreme weakening as the 90th and 10th percentile of all landfalling TC intensity changes, respectively. We found that extreme intensification and weakening have been increasing and decreasing in frequency, respectively. Results from this study can be used in a variety of future applications, including in operational forecasting and model production, and provide a baseline for climate attribution studies investigating extreme intensity change events.

Significance Statement

Landfalling tropical cyclones pose significant hazards to life and property in coastal regions across North America. This study develops a comprehensive climatology of intensity change and translation speed of tropical cyclones during the final 36 h prior to landfall. We found that incidences of extreme intensification and weakening of landfalling North American tropical cyclones have increased and decreased, respectively, since 1971. We also identify lower-latitude coastal segments tend to average faster translation speeds that higher-latitude segments, while segments on the east coast of the United States tended to average a greater acceleration. These results show the importance of looking at tropical cyclone characteristics regionally and provide a useful baseline to assess how tropical cyclone risk is changing in a warming climate.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas S. Grondin, ngrondin@ut.edu

Abstract

In this study, we investigated the translation speed and intensity change characteristics for landfalling North American tropical cyclones (TCs) from 1971 to 2020. We calculated three variables—intensity change, mean translation speed, and translation speed change—prior to each TC landfall and investigated the climatology of these variables for seven coastal segments. We found that lower-latitude segments generally had greater positive intensity changes prior to landfall, and higher-latitude segments had greater translation speeds. Longitude primarily influenced translation speed changes, with landfalling TCs along the Atlantic coast of the United States notably accelerating prior to landfall. Temporal trends in each of these variables were inconsistent geographically, but most segments showed an increase in positive intensity changes over time, demonstrating the increasing likelihood of intensifying TCs before landfall in recent years. We defined extreme intensification and extreme weakening as the 90th and 10th percentile of all landfalling TC intensity changes, respectively. We found that extreme intensification and weakening have been increasing and decreasing in frequency, respectively. Results from this study can be used in a variety of future applications, including in operational forecasting and model production, and provide a baseline for climate attribution studies investigating extreme intensity change events.

Significance Statement

Landfalling tropical cyclones pose significant hazards to life and property in coastal regions across North America. This study develops a comprehensive climatology of intensity change and translation speed of tropical cyclones during the final 36 h prior to landfall. We found that incidences of extreme intensification and weakening of landfalling North American tropical cyclones have increased and decreased, respectively, since 1971. We also identify lower-latitude coastal segments tend to average faster translation speeds that higher-latitude segments, while segments on the east coast of the United States tended to average a greater acceleration. These results show the importance of looking at tropical cyclone characteristics regionally and provide a useful baseline to assess how tropical cyclone risk is changing in a warming climate.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas S. Grondin, ngrondin@ut.edu
Save
  • Balaguru, K., G. R. Foltz, and L. R. Leung, 2018: Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic. Geophys. Res. Lett., 45, 42384247, https://doi.org/10.1029/2018GL077597.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G.R. Foltz, L.R. Leung, W. Xu, D. Kim, H. Lopez, and R. West, 2022: Increasing hurricane intensification rate near the US Atlantic coast. Geophys. Res. Lett., 49, e2022GL099793, https://doi.org/10.1029/2022GL099793.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and R. S. Cerveny, 2006: Analysis of tropical cyclone intensification trends and variability in the North Atlantic basin over the period 1970–2003. Meteor. Atmos. Phys., 93, 4551, https://doi.org/10.1007/s00703-006-0196-5.

    • Search Google Scholar
    • Export Citation
  • Benedetto, K. M., and J. C. Trepanier, 2020: Climatology of spatiotemporal analysis of North Atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere, 11, 291, https://doi.org/10.3390/atmos11030291.

    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., G. A. Vecchi, T. R. Knutson, H. Murakami, J. Kossin, K. W. Dixon, and C. E. Whitlock, 2019: Recent increases in tropical cyclone intensification rates. Nat. Commun., 10, 635, https://doi.org/10.1038/s41467-019-08471-z.

    • Search Google Scholar
    • Export Citation
  • Bhowmick, R., J. C. Trepanier, and A. M. Haberlie, 2023: Classification analysis of southwest Pacific tropical cyclone intensity changes prior to landfall. Atmosphere, 14, 253, https://doi.org/10.3390/atmos14020253.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., E. J. Gibney, D. P. Brown, M. Mainelli, J. L. Franklin, T. B. Kimberlain, and G. R. Hammer, 2009: Tropical cyclones of the eastern North Pacific basin, 1949–2006. Historical Climatology Series 6-5, National Climatic Data Center, 164 pp.

  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bregy, J. C., J. T. Maxwell, S. M. Robeson, G. L. Harley, E. A. Elliott, and K. J. Heeter, 2022: US Gulf Coast tropical cyclone precipitation influenced by volcanism and the North Atlantic subtropical high. Commun. Earth Environ., 3, 164, https://doi.org/10.1038/s43247-022-00494-7.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. T. F., 2019: Are global tropical cyclones moving slower in a warming climate. Environ. Res. Lett., 14, 104015, https://doi.org/10.1088/1748-9326/ab4031.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, https://doi.org/10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwestern United States. Mon. Wea. Rev., 137, 24152435, https://doi.org/10.1175/2009MWR2768.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. A. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Search Google Scholar
    • Export Citation
  • Ellis, K. N., L. M. Sylvester, and J. C. Trepanier, 2015: Spatiotemporal patterns of extreme hurricanes impacting US coastal cities. Nat. Hazards, 75, 27332749, https://doi.org/10.1007/s11069-014-1461-4.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2013: Hurricane Climatology: A Modern Statistical Guide Using R. Oxford University Press, 373 pp.

  • Elsner, J. B., K. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and physical mechanism. J. Climate, 13, 22932305, https://doi.org/10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Will global warming make hurricane forecasting more difficult? Bull. Amer. Meteor. Soc., 98, 495501, https://doi.org/10.1175/BAMS-D-16-0134.1.

    • Search Google Scholar
    • Export Citation
  • Fraza, E., and J. B. Elsner, 2014: A spatial climatology of North Atlantic hurricane intensity change. Int. J. Climatol., 34, 29182924, https://doi.org/10.1002/joc.3884.

    • Search Google Scholar
    • Export Citation
  • Garner, A. J., 2023: Observed increases in North Atlantic tropical cyclone peak intensification rates. Sci. Rep., 13, 16299, https://doi.org/10.1038/s41598-023-42669-y.

    • Search Google Scholar
    • Export Citation
  • Grondin, N. S., and B. D. Keim, 2021: Spatial and temporal characteristics of tropical cyclone strikes in the northeastern Pacific basin between San Diego, California and Las Peñitas, Nicaragua. Int. J. Climatol., 41, E2178E2193, https://doi.org/10.1002/joc.6838.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and J. P. Kossin, 2019: Hurricane stalling along the North American coast and implications for rainfall. npj Climate Atmos. Sci., 2, 17, https://doi.org/10.1038/s41612-019-0074-8.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., 1983: Hurricane Allen and island obstacles. J. Atmos. Sci., 40, 13601361, https://doi.org/10.1175/1520-0469(1983)040<1360:HAAIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jáuregui, E., 2003: Climatology of landfalling hurricanes and tropical storms in Mexico. Atmósfera, 16, 193204.

  • Kanji, G. K., 2006: 100 Statistical Tests. 3rd ed. Sage, 256 pp.

  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Keim, B. D., R. A. Muller, and G. W. Stone, 2007: Spatiotemporal patterns and return periods of tropical storm and hurricane strikes from Texas to Maine. J. Climate, 20, 34983509, https://doi.org/10.1175/JCLI4187.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and C. W. Landsea, 2015: Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. J. Climate, 28, 76217629, https://doi.org/10.1175/JCLI-D-15-0188.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., D. R. Chavas, M. M. Bell, S. G. Bowen, E. J. Gibney, and C. J. Schreck III, 2022: Characterizing continental US hurricane risk: Which intensity metric is best? J. Geophys. Res. Atmos., 18, e2022JD037030, https://doi.org/10.1029/2022JD037030.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slow-down of tropical cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. Wea. Forecasting, 31, 601608, https://doi.org/10.1175/WAF-D-15-0123.1.

    • Search Google Scholar
    • Export Citation
  • Kruskal, W. H., and W. A. Wallis, 1952: Use of ranks in one-criterion variance analysis. J. Amer. Stat. Assoc., 47, 583621, https://doi.org/10.1080/01621459.1952.10483441.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Laurencin, C. N., and V. Misra, 2019: Characterizing the variations of the motion of the North Atlantic tropical cyclones. Meteor. Atmos. Phys., 131, 225236, https://doi.org/10.1007/s00703-017-0566-1.

    • Search Google Scholar
    • Export Citation
  • Lazante, J. R., 2019: Uncertainties in tropical cyclone translation speed. Nature, 570, E6E15, https://doi.org/10.1038/s41586-019-1223-2.

    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., R. Domingues, G. Halliwell, J. A. Zhang, H-S. Kim, M. Aristizabal, T. Miles, S. Glenn, and G. Goni, 2021: The role of the Gulf of Mexico Ocean conditions in the intensification of Hurricane Michael (2018). J. Geophys. Res. Oceans, 126, e2020JC016969, https://doi.org/10.1029/2020JC016969.

    • Search Google Scholar
    • Export Citation
  • Li, L., and P. Chakraborty, 2020: Slower decay of landfalling hurricanes in a warming world. Nature, 587, 230234, https://doi.org/10.1038/s41586-020-2867-7.

    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316, https://doi.org/10.1175/2007WAF2006111.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, https://doi.org/10.1029/2011GL050765.

    • Search Google Scholar
    • Export Citation
  • Moon, I. J., S. H. Kim, and J. C. L. Chan, 2019: Climate change and tropical cyclone trend. Nature, 570, E3E5, https://doi.org/10.1038/s41586-019-1222-3.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2023: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Rappaport, E. N., J. L. Franklin, A. B. Schumacher, M. DeMaria, L. K. Shay, and E. J. Gibney, 2010: Tropical cyclone intensity change before U.S. Gulf Coast landfall. Wea. Forecasting, 25, 13801396, https://doi.org/10.1175/2010WAF2222369.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., K. M. Wood, D. S. Gutzler, and S. R. White, 2011: The influence of eastern North Pacific tropical cyclone remnants on the southwestern United States. Mon. Wea. Rev., 139, 192210, https://doi.org/10.1175/2010MWR3389.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., S. Aberson, M. M. Bell, D. J. Cecil, J. D. Doyle, T. B. Kimberlain, L. K. Shay, and C. Velden, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Senkbeil, J. C., L. Myers, S. Jasko, J. R. Reed, and R. Mueller, 2020: Communication and Hazard perception lessons from category five Hurricane Michael. Atmosphere, 11, 804, https://doi.org/10.3390/atmos11080804.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Wakefield, R. A., J. B. Basara, J. M. Shepherd, N. Brauer, J. C. Furtado, J. A. Santanello, and R. Edwards, 2021: The inland maintenance and reintensification of Tropical Storm Bill (2015). Part I: Contributions of the brown ocean effect. J. Hydrometeor., 22, 26752693, https://doi.org/10.1175/JHM-D-20-0150.1.

    • Search Google Scholar
    • Export Citation
  • Walker, N. D., R. R. Leben, C. T. Pilley, M. Shannon, D. C. Herndon, I. F. Pun, I. I. Lin, and C. L. Gentemann, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophys. Res. Lett., 41, 75957601, https://doi.org/10.1002/2014GL061584.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and H. Jiang, 2021: Contrasting behaviors between the rapidly intensifying and slowly intensifying tropical cyclones in the North Atlantic and eastern Pacific basins. J. Climate, 34, 9871003, https://doi.org/10.1175/JCLI-D-19-0908.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2014: A 40-year climatology of extratropical transition in eastern North Pacific. J. Climate, 27, 59996015, https://doi.org/10.1175/JCLI-D-13-00645.1.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10 09110 097, https://doi.org/10.1002/2015GL066697.

    • Search Google Scholar
    • Export Citation
  • Yaukey, P. H., 2014: Intensification and rapid intensification of North Atlantic tropical cyclones: Geography, time of year, age since genesis, and storm characteristics. Int. J. Climatol., 34, 10381049, https://doi.org/10.1002/joc.3744.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. M. Collins, and P. J. Klotzbach, 2021: Nearshore hurricane intensity change and post-landfall dissipation along the United States Gulf and East Coasts. Geophys. Res. Lett., 48, e2021GL094680, https://doi.org/10.1029/2021GL094680.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 398 398 32
Full Text Views 112 112 10
PDF Downloads 135 135 17