Assessing Regional-Scale Heterogeneity in Blue–Green Water Availability under the 1.5°C Global Warming Scenario

Shoobhangi Tyagi aIndian Institute of Technology Delhi, India, Delhi, India
bPurdue University, West Lafayette, Indiana

Search for other papers by Shoobhangi Tyagi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1583-8100
,
Sandeep Sahany cCentre for Climate Research Singapore, Singapore

Search for other papers by Sandeep Sahany in
Current site
Google Scholar
PubMed
Close
,
Dharmendra Saraswat bPurdue University, West Lafayette, Indiana

Search for other papers by Dharmendra Saraswat in
Current site
Google Scholar
PubMed
Close
,
Saroj Kanta Mishra aIndian Institute of Technology Delhi, India, Delhi, India

Search for other papers by Saroj Kanta Mishra in
Current site
Google Scholar
PubMed
Close
,
Amlendu Dubey aIndian Institute of Technology Delhi, India, Delhi, India

Search for other papers by Amlendu Dubey in
Current site
Google Scholar
PubMed
Close
, and
Dev Niyogi bPurdue University, West Lafayette, Indiana
dThe University of Texas at Austin, Austin, Texas

Search for other papers by Dev Niyogi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 2015 Paris Agreement outlined limiting global warming to 1.5°C relative to the preindustrial levels, necessitating the development of regional climate adaptation strategies. This requires a comprehensive understanding of how the 1.5°C rise in global temperature would translate across different regions. However, its implications on critical agricultural components, particularly blue and green water, remains understudied. This study investigates these changes using a rice-growing semiarid region in central India. The aim of this study is to initiate a discussion on the regional response of blue–green water at specific warming levels. Using different global climate models (GCMs) and shared socioeconomic pathways (SSPs), the study estimated the time frame for reaching the 1.5°C warming level and subsequently investigated changes in regional precipitation, temperature, surface runoff, and blue–green water. The results reveal projected reductions in precipitation and surface runoff by approximately 5%–15% and 10%–35%, respectively, along with decrease in green and blue water by approximately 12%–1% and 40%–10%, respectively, across different GCMs and SSPs. These findings highlight 1) the susceptibility of blue–green water to the 1.5°C global warming level, 2) the narrow time frame available for the region to develop the adaptive strategies, 3) the influence of warm semiarid climate on the blue–green water dynamics, and 4) the uncertainty associated with regional assessment of a specific warming level. This study provides new insights for shaping food security strategies over highly vulnerable semiarid regions and is expected to serve as a reference for other regional blue/green water assessment studies.

Significance Statement

This study helps to drive home the message that a global agreement to limit the warming level to 1.5°C does not mean local-scale temperature (and associated hydrological) impacts would be limited to those levels. The regional changes can be more exaggerated and uncertain, and they also depend on the choice of the climate model and region. Therefore, local-scale vulnerability assessments must focus on the multidimensional assessment of a 1.5°C warmer world involving different climate models, climate-sensitive components, and regions. This information is relevant for managing vulnerable agricultural systems. This study is among the first to investigate the critical agricultural components such as the blue–green water over a semiarid Indian region, and the findings and methodology are expected to be transferable for performing regional-scale assessments elsewhere.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Shoobhangi Tyagi, shoobha.93@gmail.com; Dev Niyogi, dev.niyogi@jsg.utexas.edu

Abstract

The 2015 Paris Agreement outlined limiting global warming to 1.5°C relative to the preindustrial levels, necessitating the development of regional climate adaptation strategies. This requires a comprehensive understanding of how the 1.5°C rise in global temperature would translate across different regions. However, its implications on critical agricultural components, particularly blue and green water, remains understudied. This study investigates these changes using a rice-growing semiarid region in central India. The aim of this study is to initiate a discussion on the regional response of blue–green water at specific warming levels. Using different global climate models (GCMs) and shared socioeconomic pathways (SSPs), the study estimated the time frame for reaching the 1.5°C warming level and subsequently investigated changes in regional precipitation, temperature, surface runoff, and blue–green water. The results reveal projected reductions in precipitation and surface runoff by approximately 5%–15% and 10%–35%, respectively, along with decrease in green and blue water by approximately 12%–1% and 40%–10%, respectively, across different GCMs and SSPs. These findings highlight 1) the susceptibility of blue–green water to the 1.5°C global warming level, 2) the narrow time frame available for the region to develop the adaptive strategies, 3) the influence of warm semiarid climate on the blue–green water dynamics, and 4) the uncertainty associated with regional assessment of a specific warming level. This study provides new insights for shaping food security strategies over highly vulnerable semiarid regions and is expected to serve as a reference for other regional blue/green water assessment studies.

Significance Statement

This study helps to drive home the message that a global agreement to limit the warming level to 1.5°C does not mean local-scale temperature (and associated hydrological) impacts would be limited to those levels. The regional changes can be more exaggerated and uncertain, and they also depend on the choice of the climate model and region. Therefore, local-scale vulnerability assessments must focus on the multidimensional assessment of a 1.5°C warmer world involving different climate models, climate-sensitive components, and regions. This information is relevant for managing vulnerable agricultural systems. This study is among the first to investigate the critical agricultural components such as the blue–green water over a semiarid Indian region, and the findings and methodology are expected to be transferable for performing regional-scale assessments elsewhere.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Shoobhangi Tyagi, shoobha.93@gmail.com; Dev Niyogi, dev.niyogi@jsg.utexas.edu
Save
  • Abbaspour, K. C., 2015: SWAT calibration and uncertainty programs—A user manual. Eawag, 100 pp., https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf.

  • Abbaspour, K. C., S. A. Vaghefi, H. Yang, and R. Srinivasan, 2019: Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT applications. Sci. Data, 6, 263, https://doi.org/10.1038/s41597-019-0282-4.

    • Search Google Scholar
    • Export Citation
  • Abeysingha, N. S., M. Singh, A. Islam, and V. K. Sehgal, 2016: Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: A case study. SpringerPlus, 5, 1250, https://doi.org/10.1186/s40064-016-2905-y.

    • Search Google Scholar
    • Export Citation
  • Aghakhani Afshar, A., Y. Hassanzadeh, M. Pourreza-Bilondi, and A. Ahmadi, 2018: Analyzing long-term spatial variability of blue and green water footprints in a semi-arid mountainous basin with MIROC-ESM model (case study: Kashafrood River basin, Iran). Theor. Appl. Climatol., 134, 885899, https://doi.org/10.1007/s00704-017-2309-0.

    • Search Google Scholar
    • Export Citation
  • Alegría, M. E. O., N. Schütze, and D. Niyogi, 2019: Evaluation of hydroclimatic variability and prospective irrigation strategies in the U.S. Corn Belt. Water, 11, 2447, https://doi.org/10.3390/w11122447.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and Coauthors, 2018: Framing and context. Global Warming of 1.5°C, V. Masson-Delmotte et al., Eds., Cambridge University Press, 49–92, https://doi.org/10.1017/9781009157940.003.

  • Ambika, A. K., B. Wardlow, and V. Mishra, 2016: Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data, 3, 160118, https://doi.org/10.1038/sdata.2016.118.

    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., P. M. Allen, R. Muttiah, and G. Bernhardt, 1995: Automated base flow separation and recession analysis techniques. Ground Water, 33, 10101018, https://doi.org/10.1111/j.1745-6584.1995.tb00046.x.

    • Search Google Scholar
    • Export Citation
  • Badou, D. F., B. Diekkrüger, E. Kapangaziwiri, M. L. Mbaye, Y. Yira, E. A. Lawin, G. T. Oyerinde, and A. Afouda, 2018: Modelling blue and green water availability under climate change in the Beninese basin of the Niger River basin, West Africa. Hydrol. Processes, 32, 25262542, https://doi.org/10.1002/hyp.13153.

    • Search Google Scholar
    • Export Citation
  • Bhowmick, M., S. Sahany, and S. K. Mishra, 2019: Projected precipitation changes over the South Asian region for every 0.5°C increase in global warming. Environ. Res. Lett., 14, 054005, https://doi.org/10.1088/1748-9326/ab1271.

    • Search Google Scholar
    • Export Citation
  • Bhuarya, S. K., J. L. Chaudhary, N. Manikandan, and D. Khalkho, 2015: Spatial analysis of rainfall and rainy days in Chhattisgarh State, India. J. Agric. Phys, 15, 140149.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., A. Tigga, and B. Hema Malinim, 2018: Assessment of climates in Chhattisgarh Plain—A moisture regime approach. Trans. Inst. Indian Geogr., 40, 2532.

    • Search Google Scholar
    • Export Citation
  • Chaudhary, S., C. T. Dhanya, and R. Vinnarasi, 2017: Dry and wet spell variability during monsoon in gauge-based gridded daily precipitation datasets over India. J. Hydrol., 546, 204218, https://doi.org/10.1016/j.jhydrol.2017.01.023.

    • Search Google Scholar
    • Export Citation
  • Chawra, U., G. Kar, H. Vardhan Puranik, and G. K. Das, 2021: Impact of climate change on water footprint of major crops of Chhattisgarh. Pharma Innov. J., 10, 11831189.

    • Search Google Scholar
    • Export Citation
  • Chhattisgarh Environment Conservation Board, 2020: Agriculture. ENVIS Hub: Chhattisgarh Environment Conservation Board, accessed 16 August 2020, https://chtenvis.nic.in/Agriculture.html.

  • Chou, J., W. Zhao, J. Li, Y. Xu, F. Yang, M. Sun, and Y. Li, 2021: Changes in extreme climate events in rice-growing regions under different warming scenarios in China. Front. Earth Sci., 9, 655128, https://doi.org/10.3389/feart.2021.655128.

    • Search Google Scholar
    • Export Citation
  • Das, S. K., A. Ahsan, M. H. R. B. Khan, M. A. U. R. Tariq, N. Muttil, and A. W. M. Ng, 2022: Impacts of climate alteration on the hydrology of the Yarra River catchment, Australia using GCMs and SWAT model. Water, 14, 445, https://doi.org/10.3390/w14030445.

    • Search Google Scholar
    • Export Citation
  • Dey, A., and R. Remesan, 2022: Multimodel quantification of green and blue water components and its error propagations through parameter transferability approach across input choices. J. Hydrol., 607, 127579, https://doi.org/10.1016/j.jhydrol.2022.127579.

    • Search Google Scholar
    • Export Citation
  • Dile, Y. T., and R. Srinivasan, 2014: Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River basin. J. Amer. Water Resour. Assoc., 50, 12261241, https://doi.org/10.1111/jawr.12182.

    • Search Google Scholar
    • Export Citation
  • Dixit, A., S. Sahany, and A. V. Kulkarni, 2021: Glacial changes over the Himalayan Beas basin under global warming. J. Environ. Manage., 295, 113101, https://doi.org/10.1016/j.jenvman.2021.113101.

    • Search Google Scholar
    • Export Citation
  • Douglas-Mankin, K. R., R. Srinivasan, and J. G. Arnold, 2010: Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE, 53, 14231431, https://doi.org/10.13031/2013.34915.

    • Search Google Scholar
    • Export Citation
  • Du, L., A. Rajib, and V. Merwade, 2018: Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. J. Hydrol., 562, 84102, https://doi.org/10.1016/j.jhydrol.2018.02.071.

    • Search Google Scholar
    • Export Citation
  • Falkenmark, M., 1995: Land-water linkages: A synopsis. Land and Water Bulletin: Land and Water Integration and River Basin Management, Vol. 1, FAO, 15–17.

  • Fuka, D. R., M. T. Walter, C. Macalister, A. T. Degaetano, T. S. Steenhuis, and Z. M. Easton, 2014: Using the climate forecast system reanalysis as weather input data for watershed models. Hydrol. Processes, 28, 56135623, https://doi.org/10.1002/hyp.10073.

    • Search Google Scholar
    • Export Citation
  • Gupta, V., and M. K. Jain, 2018: Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. J. Hydrol., 567, 489509, https://doi.org/10.1016/j.jhydrol.2018.10.012.

    • Search Google Scholar
    • Export Citation
  • Gusain, A., M. P. Mohanty, S. Ghosh, C. Chatterjee, and S. Karmakar, 2020a: Capturing transformation of flood hazard over a large river basin under changing climate using a top-down approach. Sci. Total Environ., 726, 138600, https://doi.org/10.1016/j.scitotenv.2020.138600.

    • Search Google Scholar
    • Export Citation
  • Gusain, A., S. Ghosh, and S. Karmakar, 2020b: Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res., 232, 104680, https://doi.org/10.1016/j.atmosres.2019.104680.

    • Search Google Scholar
    • Export Citation
  • He, L., and L. Rosa, 2023: Solutions to agricultural green water scarcity under climate change. PNAS Nexus, 2, pgad117, https://doi.org/10.1093/pnasnexus/pgad117.

    • Search Google Scholar
    • Export Citation
  • Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, 2013: A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn., 4, 219236, https://doi.org/10.5194/esd-4-219-2013.

    • Search Google Scholar
    • Export Citation
  • Himanshu, S. K., A. Pandey, and P. Shrestha, 2017: Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environ. Earth Sci., 76, 3, https://doi.org/10.1007/s12665-016-6316-8.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Coauthors, 2015: What do experienced water managers think of water resources of our nation and its management infrastructure? PLOS ONE, 10, e0142073, https://doi.org/10.1371/journal.pone.0142073.

    • Search Google Scholar
    • Export Citation
  • Huo, J., X. Qu, D. Zhu, Z. Yuan, and Y. Tang, 2021: Impacts of climate change on blue and green water resources in the middle and upper Yarlung Zangbo River, China. Atmosphere, 12, 1280, https://doi.org/10.3390/atmos12101280.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 3–32, https://doi.org/10.1017/9781009157896.001.

  • Jain, S., P. Salunke, S. K. Mishra, and S. Sahany, 2019a: Performance of CMIP5 models in the simulation of Indian summer monsoon. Theor. Appl. Climatol., 137, 14291447, https://doi.org/10.1007/s00704-018-2674-3.

    • Search Google Scholar
    • Export Citation
  • Jain, S., P. Salunke, S. K. Mishra, S. Sahany, and N. Choudhary, 2019b: Advantage of NEX-GDDP over CMIP5 and CORDEX data: Indian summer monsoon. Atmos. Res., 228, 152160, https://doi.org/10.1016/j.atmosres.2019.05.026.

    • Search Google Scholar
    • Export Citation
  • Jewitt, G., 2006: Integrating blue and green water flows for water resources management and planning. Phys. Chem. Earth, 31, 753762, https://doi.org/10.1016/j.pce.2006.08.033.

    • Search Google Scholar
    • Export Citation
  • Jeyrani, F., S. Morid, and R. Srinivasan, 2021: Assessing basin blue–green available water components under different management and climate scenarios using SWAT. Agric. Water Manage., 256, 107074, https://doi.org/10.1016/j.agwat.2021.107074.

    • Search Google Scholar
    • Export Citation
  • Joshi, P. K., M. Kumar, A. Paliwal, N. Midha, and P. P. Dash, 2009: Assessing impact of industrialization in terms of LULC in a dry tropical region (Chhattisgarh), India using remote sensing data and GIS over a period of 30 years. Environ. Monit. Assess., 149, 371376, https://doi.org/10.1007/s10661-008-0211-z.

    • Search Google Scholar
    • Export Citation
  • Kang, W., and Coauthors, 2023: Spatiotemporal dynamics of blue and green water resources in a mountainous watershed: A case study of the Wujiang River basin, China. J. Hydrol. Reg. Stud., 48, 101484, https://doi.org/10.1016/j.ejrh.2023.101484.

    • Search Google Scholar
    • Export Citation
  • Kumar, M., Ø. Hodnebrog, A. S. Daloz, S. Sen, S. Badiger, and J. Krishnaswamy, 2021: Measuring precipitation in eastern Himalaya: Ground validation of eleven satellite, model and gauge interpolated gridded products. J. Hydrol., 599, 126252, https://doi.org/10.1016/j.jhydrol.2021.126252.

    • Search Google Scholar
    • Export Citation
  • Kumar, N., B. Tischbein, J. Kusche, P. Laux, M. K. Beg, and J. J. Bogardi, 2017: Impact of climate change on water resources of upper Kharun catchment in Chhattisgarh, India. J. Hydrol. Reg. Stud., 13, 189207, https://doi.org/10.1016/j.ejrh.2017.07.008.

    • Search Google Scholar
    • Export Citation
  • Lehner, F., I. Nadeem, and H. Formayer, 2023: Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios. Adv. Stat. Climatol. Meteor. Oceanogr., 9, 2944, https://doi.org/10.5194/ascmo-9-29-2023.

    • Search Google Scholar
    • Export Citation
  • Li, B., L. Zhou, J. Qin, and Z. Meng, 2022: Key process diagnostics for monsoon intraseasonal oscillation over the Indian Ocean in coupled CMIP6 models. Climate Dyn., 59, 28532870, https://doi.org/10.1007/s00382-022-06245-w.

    • Search Google Scholar
    • Export Citation
  • Liang, J., and Coauthors, 2020: Interactive effects of climate variability and human activities on blue and green water scarcity in rapidly developing watershed. J. Cleaner Prod., 265, 121834, https://doi.org/10.1016/j.jclepro.2020.121834.

    • Search Google Scholar
    • Export Citation
  • Liu, M., D. Wang, X. Chen, Y. Chen, L. Gao, and H. Deng, 2022: Impacts of climate variability and land use on the blue and green water resources in a subtropical basin of China. Sci. Rep., 12, 20993, https://doi.org/10.1038/s41598-022-21880-3.

    • Search Google Scholar
    • Export Citation
  • Liu, X., J. Andresen, H. Yang, and D. Niyogi, 2015: Calibration and validation of the hybrid-maize crop model for regional analysis and application over the U.S. Corn Belt. Earth Interact., 19, https://doi.org/10.1175/EI-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
  • Liu, X., W. Liu, Q. Tang, B. Liu, Y. Wada, and H. Yang, 2022: Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future, 10, e2021EF002567, https://doi.org/10.1029/2021EF002567.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Arnold, P. Allen, and X. Chen, 2012: Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, northwest China. Hydrol. Earth Syst. Sci., 16, 12591267, https://doi.org/10.5194/hess-16-1259-2012.

    • Search Google Scholar
    • Export Citation
  • Ma, W., C. Opp, and D. Yang, 2020: Spatiotemporal supply-demand characteristics and economic benefits of crop water footprint in the semi-arid region. Sci. Total Environ., 738, 139502, https://doi.org/10.1016/j.scitotenv.2020.139502.

    • Search Google Scholar
    • Export Citation
  • Madakumbura, G. D., and Coauthors, 2019: Event-to-event intensification of the hydrologic cycle from 1.5°C to a 2°C warmer world. Sci. Rep., 9, 34831, https://doi.org/10.1038/s41598-019-39936-2.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., H. Truhetz, and A. Schaffer, 2021: Regional climate model biases, their dependence on synoptic circulation biases and the potential for bias adjustment: A process-oriented evaluation of the Austrian regional climate projections. J. Geophys. Res. Atmos., 126, e2020JD032824, https://doi.org/10.1029/2020JD032824.

    • Search Google Scholar
    • Export Citation
  • Mehan, S., N. Kannan, R. P. Neupane, R. McDaniel, and S. Kumar, 2016: Climate change impacts on the hydrological processes of a small agricultural watershed. Climate, 4, 56, https://doi.org/10.3390/cli4040056.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., S. Sahany, P. Salunke, I.-S. Kang, and S. Jain, 2018: Fidelity of CMIP5 multi-model mean in assessing Indian monsoon simulations. npj Climate Atmos. Sci., 1, 39, https://doi.org/10.1038/s41612-018-0049-1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D., and Coauthors, 2017: Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model Dev., 10, 571583, https://doi.org/10.5194/gmd-10-571-2017.

    • Search Google Scholar
    • Export Citation
  • Mohanty, U. C., H. P. Nayak, P. Sinha, K. K. Osuri, and D. Niyogi, 2019: Land surface processes over Indian summer monsoon region: A review. Mausam, 70, 691708, https://doi.org/10.54302/mausam.v70i4.209.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., and Coauthors, 2015: Hydrologic and water quality models: Key calibration and validation topics. Trans. ASABE, 58, 16091618, https://doi.org/10.13031/trans.58.11075.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., N. Pai, J. L. Steiner, P. H. Gowda, M. Winchell, H. Rathjens, P. J. Starks, and J. A. Verser, 2019: SWAT-LUT: A desktop graphical user interface for updating land use in SWAT. J. Amer. Water Resour. Assoc., 55, 11021115, https://doi.org/10.1111/1752-1688.12789.

    • Search Google Scholar
    • Export Citation
  • Nayak, H. P., K. K. Osuri, P. Sinha, R. Nadimpalli, U. C. Mohanty, F. Chen, M. Rajeevan, and D. Niyogi, 2018: High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region. Sci. Data, 5, 180264, https://doi.org/10.1038/sdata.2018.264.

    • Search Google Scholar
    • Export Citation
  • Negewo, T. F., and A. K. Sarma, 2021: Estimation of water yield under baseline and future climate change scenarios in Genale watershed, Genale Dawa River basin, Ethiopia, using SWAT model. J. Hydrol. Eng., 26, https://doi.org/10.1061/(asce)he.1943-5584.0002047.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., C. Kishtawal, S. Tripathi, and R. S. Govindaraju, 2010: Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resour. Res., 46, W03533, https://doi.org/10.1029/2008WR007082.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., X. Liu, J. Andresen, Y. Song, A. K. Jain, O. Kellner, E. S. Takle, and O. C. Doering, 2015: Crop models capture the impacts of climate variability on corn yield. Geophys. Res. Lett., 42, 33563363, https://doi.org/10.1002/2015GL063841.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D. S., S. Raman, and K. Alapaty, 1999: Uncertainty in the specification of surface characteristics, Part II: Hierarchy of interaction-explicit statistical analysis. Bound.-Layer Meteor., 91, 341366, https://doi.org/10.1023/A:1002023724201.

    • Search Google Scholar
    • Export Citation
  • Orth, R., and G. Destouni, 2018: Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun., 9, 3602, https://doi.org/10.1038/s41467-018-06013-7.

    • Search Google Scholar
    • Export Citation
  • Osima, S., and Coauthors, 2018: Projected climate over the Greater Horn of Africa under 1.5°C and 2°C global warming. Environ. Res. Lett., 13, 065004, https://doi.org/10.1088/1748-9326/aaba1b.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 1, 118, https://doi.org/10.54302/mausam.v65i1.851.

    • Search Google Scholar
    • Export Citation
  • Pai, N., and D. Saraswat, 2011: SWAT2009_LUC: A tool to activate the land use change module in SWAT 2009. Trans. ASABE, 54, 16491658, https://doi.org/10.13031/2013.39854.

    • Search Google Scholar
    • Export Citation
  • Pai, N., D. Saraswat, and R. Srinivasan, 2012: Field_SWAT: A tool for mapping SWAT output to field boundaries. Comput. Geosci., 40, 175184, https://doi.org/10.1016/j.cageo.2011.07.006.

    • Search Google Scholar
    • Export Citation
  • Pandey, B. K., D. Khare, A. Kawasaki, and P. K. Mishra, 2019: Climate change impact assessment on blue and green water by coupling of representative CMIP5 climate models with physical based hydrological model. Water Resour. Manage., 33, 141158, https://doi.org/10.1007/s11269-018-2093-3.

    • Search Google Scholar
    • Export Citation
  • Qian, W., and H. H. Chang, 2021: Projecting health impacts of future temperature: A comparison of quantile-mapping bias-correction methods. Int. J. Environ. Res. Public Health, 18, 1992, https://doi.org/10.3390/ijerph18041992.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, J. Kale, and B. Lal, 2005: Development of a high resolution daily gridded rainfall data for the Indian region. Government of India, India Meteorological Department, 27 pp.

  • Rodrigues, D. B. B., H. V. Gupta, and E. M. Mendionda, 2014: A blue/green water-based accounting framework for assessment of water security. Water Resour. Res., 50, 71877205, https://doi.org/10.1002/2013WR014274.

    • Search Google Scholar
    • Export Citation
  • Rosa, L., D. D. Chiarelli, M. C. Rulli, J. Dell’Angelo, and P. D’Odorico, 2020: Global agricultural economic water scarcity. Sci. Adv., 6, eaaz6031, https://doi.org/10.1126/sciadv.aaz6031.

    • Search Google Scholar
    • Export Citation
  • Salunke, P., N. P. Keshri, S. K. Mishra, and S. K. Dash, 2023: Future projections of seasonal temperature and precipitation for India. Front. Climate, 5, 1069994, https://doi.org/10.3389/fclim.2023.1069994.

    • Search Google Scholar
    • Export Citation
  • Sarkar, S., and R. Maity, 2022: Future characteristics of extreme precipitation indicate the dominance of frequency over intensity: A multi-model assessment from CMIP6 across India. J. Geophys. Res. Atmos., 127, e2021JD035539, https://doi.org/10.1029/2021JD035539.

    • Search Google Scholar
    • Export Citation
  • Scholes, R. J., 2020: The future of semi-arid regions: A weak fabric unravels. Climate, 8, 43, https://doi.org/10.3390/cli8030043.

  • Sharma, S., B. Gurjar, and R. M. Sahu, 2018: Economic analysis of rice production in Bilaspur district of Chhattisgarh. J. Pharmacogn. Phytochem., 7, 28732876.

    • Search Google Scholar
    • Export Citation
  • Siddique, R., A. Mejia, N. Mizukami, and R. N. Palmer, 2021: Impacts of global warming of 1.5, 2.0 and 3.0°C on hydrologic regimes in the northeastern U.S. Climate, 9, 9, https://doi.org/10.3390/cli9010009.

    • Search Google Scholar
    • Export Citation
  • Singh, G., D. Saraswat, N. Pai, and B. Hancock, 2019: LUU CHECKER: A web-based tool to incorporate emerging LUs in the SWAT model. Appl. Eng. Agric., 35, 723731, https://doi.org/10.13031/aea.13295.

    • Search Google Scholar
    • Export Citation
  • Singh, J., S. Sahany, and A. Robock, 2020: Can stratospheric geoengineering alleviate global warming-induced changes in deciduous fruit cultivation? The case of Himachal Pradesh (India). Climatic Change, 162, 13231343, https://doi.org/10.1007/s10584-020-02786-3.

    • Search Google Scholar
    • Export Citation
  • Singh, L., and S. Saravanan, 2020: Simulation of monthly streamflow using the SWAT model of the Ib River watershed, India. HydroResearch, 3, 95105, https://doi.org/10.1016/j.hydres.2020.09.001.

    • Search Google Scholar
    • Export Citation
  • Singh, N., A. Shandilya, R. K. Tripathi, and K. K. Sharma, 2021: Spatio-temporal landcover dynamics and environmental impact in coal mine area of Korba district (Chhattisgarh). IOP Conf. Ser. Mater. Sci. Eng., 1116, 012182, https://doi.org/10.1088/1757-899X/1116/1/012182.

    • Search Google Scholar
    • Export Citation
  • Sinnathamby, S., K. R. Douglas-Mankin, and C. Craige, 2017: Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agric. Water Manage., 180, 6169, https://doi.org/10.1016/j.agwat.2016.10.024.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, R., X. Zhang, and J. Arnold, 2010: SWAT ungauged: Hydrological budget and crop yield predictions in the upper Mississippi River basin. Trans. ASABE, 53, 15331546, https://doi.org/10.13031/2013.34903.

    • Search Google Scholar
    • Export Citation
  • Srivastava, A. K., M. Rajeevan, and S. R. Kshirsagar, 2009: Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett., 10, 249254, https://doi.org/10.1002/asl.232.

    • Search Google Scholar
    • Export Citation
  • Swain, S., 2017: Hydrological modeling through soil and water assessment tool in a climate change perspective a brief review. 2017 Second Int. Conf. Convergence Technology (I2CT), Mumbai, India, Institute of Electrical and Electronics Engineers, 358–361, https://doi.org/10.1109/I2CT.2017.8226151.

  • Swain, S., M. Verma, and M. K. Verma, 2015: Statistical trend analysis of monthly rainfall for Raipur District, Chhattisgarh. Int. J. Adv. Eng. Res. Stud., IV, 8789.

    • Search Google Scholar
    • Export Citation
  • Swain, S., S. K. Mishra, A. Pandey, A. C. Pandey, A. Jain, S. K. Chauhan, and A. K. Badoni, 2022: Hydrological modelling through SWAT over a Himalayan catchment using high-resolution geospatial inputs. Environ. Challenges, 8, 100579, https://doi.org/10.1016/j.envc.2022.100579.

    • Search Google Scholar
    • Export Citation
  • Tan, M. L., N. Samat, N. W. Chan, A. J. Lee, and C. Li, 2019: Analysis of precipitation and temperature extremes over the Muda River basin, Malaysia. Water, 11, 283, https://doi.org/10.3390/w11020283.

    • Search Google Scholar
    • Export Citation
  • Tan, M. L., P. W. Gassman, X. Yang, and J. Haywood, 2020: A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour., 143, 103662, https://doi.org/10.1016/j.advwatres.2020.103662.

    • Search Google Scholar
    • Export Citation
  • Thrasher, B., W. Wang, A. Michaelis, F. Melton, T. Lee, and R. Nemani, 2022: NASA global daily downscaled projections, CMIP6. Sci. Data, 9, 262, https://doi.org/10.1038/s41597-022-01393-4.

    • Search Google Scholar
    • Export Citation
  • Tripathi, B. P., N. K. Mishra, and K. K. Pandey, 2019: Assessment of IDM modules with some fungicides for rice false smut disease in Chhattisgarh, India. Int. J. Curr. Microbiol. Appl. Sci., 8, 807811, https://doi.org/10.20546/ijcmas.2019.809.096.

    • Search Google Scholar
    • Export Citation
  • Tyagi, S., N. Singh, G. Sonkar, and R. K. Mall, 2019: Sensitivity of evapotranspiration to climate change using DSSAT model in sub humid climate region of eastern Uttar Pradesh. Model. Earth Syst. Environ., 5, 111, https://doi.org/10.1007/s40808-018-0513-2.

    • Search Google Scholar
    • Export Citation
  • Tyagi, S., X. Zhang, D. Saraswat, S. Sahany, S. K. Mishra, and D. Niyogi, 2022: Flash drought: Review of concept, prediction and the potential for machine learning, deep learning methods. Earth’s Future, 10, e2022EF002723, https://doi.org/10.1029/2022EF002723.

    • Search Google Scholar
    • Export Citation
  • van Griensven, A., P. Ndomba, S. Yalew, and F. Kilonzo, 2012: Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci., 16, 33713381, https://doi.org/10.5194/hess-16-3371-2012.

    • Search Google Scholar
    • Export Citation
  • Veettil, A. V., and A. K. Mishra, 2016: Water security assessment using blue and green water footprint concepts. J. Hydrol., 542, 589602, https://doi.org/10.1016/j.jhydrol.2016.09.032.

    • Search Google Scholar
    • Export Citation
  • Verma, M. K., and M. K. Verma, 2019: Calibration of a hydrological model and sensitivity analysis of its parameters: A case study of Seonath River basin. Int. J. Hydrol. Sci. Technol., 9, 640656, https://doi.org/10.1504/IJHST.2019.103444.

    • Search Google Scholar
    • Export Citation
  • Wei, X., R. T. Bailey, and A. Tasdighi, 2018: Using the SWAT model in intensively managed irrigated watersheds: Model modification and application. J. Hydrol. Eng., 23, 04018044, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001696.

    • Search Google Scholar
    • Export Citation
  • Willkofer, F., F. J. Schmid, H. Komischke, J. Korck, M. Braun, and R. Ludwig, 2018: The impact of bias correcting regional climate model results on hydrological indicators for Bavarian catchments. J. Hydrol. Reg. Stud., 19, 2541, https://doi.org/10.1016/j.ejrh.2018.06.010.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and Y. Cui, 2011: Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice. J. Hydrol., 396, 6171, https://doi.org/10.1016/j.jhydrol.2010.10.032.

    • Search Google Scholar
    • Export Citation
  • Yaduvanshi, A., M. Zaroug, R. Bendapudi, and M. New, 2019: Impacts of 1.5°C and 2°C global warming on regional rainfall and temperature change across India. Environ. Res. Commun., 1, 125002, https://doi.org/10.1088/2515-7620/ab4ee2.

    • Search Google Scholar
    • Export Citation
  • Yang, M., W. Xiao, Y. Zhao, X. Li, Y. Huang, F. Lu, B. Hou, and B. Li, 2018: Assessment of potential climate change effects on the rice yield and water footprint in the Nanliujiang Catchment, China. Sustainable, 10, 242, https://doi.org/10.3390/su10020242.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Y. Xu, F. Hao, C. Li, and X. Wang, 2019: Hydrological components variability under the impact of climate change in a semi-arid river basin. Water, 11, 1122, https://doi.org/10.3390/w11061122.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., C. Tang, A. Ye, T. Zheng, X. Nie, A. Tu, H. Zhu, and S. Zhang, 2020: Impacts of climate and land-use change on blue and green water: A case study of the upper Ganjiang River basin, China. Water, 12, 2661, https://doi.org/10.3390/w12102661.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., X. Zhang, C. Ma, C. Gao, and Y.-P. Xu, 2016: Investigating the uncertainty and transferability of parameters in SWAT model under climate change. Hydrol. Sci. J., 61, 914930, https://doi.org/10.1080/02626667.2014.1000915.