Revealing the Precipitation Characteristics of Tropical Cyclone Ockhi from Polarimetric Doppler Weather Radar in Conjunction with Disdrometer Observations

Saranya Sasidharan aRadar Development Area, ISTRAC, Indian Space Research Organization, Bangalore, India
bIndian Institute of Space Science and Technology, Thiruvananthapuram, India

Search for other papers by Saranya Sasidharan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6175-1305
,
V. K. Anandan aRadar Development Area, ISTRAC, Indian Space Research Organization, Bangalore, India

Search for other papers by V. K. Anandan in
Current site
Google Scholar
PubMed
Close
, and
Sourin Mukhopadhyay bIndian Institute of Space Science and Technology, Thiruvananthapuram, India

Search for other papers by Sourin Mukhopadhyay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the rainfall and microphysical structure of precipitation associated with Tropical Cyclone Ockhi using polarimetric Doppler weather radar (PDWR) products. The study reports the statistical analysis of precipitation types of tropical cyclone cloud systems over the north Indian Ocean, by combining the observations of the PDWR and disdrometer for the first time. There are few studies that mention initial DWR observations of TC over this low-latitude region below 23.5°N. We tried to further carry out a statistical analysis of precipitating clouds in a cyclone from its depression stage to severe cyclonic stage. This study tries to classify and quantify the contribution of convective and stratiform rain to the total TC rainfall. Precipitating clouds have been classified into convective and stratiform based on reflectivity measurements. The vertical profiles (VPRs) of the radar reflectivity Z and the differential reflectivity ZDR obtained for the stratiform and the convective events are compared. A study of the VPR of the convective events reveals that the Z and ZDR parameters tend to increase as the raindrops descend toward the ground owing to enhanced collision–coalescence processes. The VPR of stratiform rain shows signatures of the bright band (BB). The drop size distribution (DSD) parameters and rainfall rate pertaining to the two different precipitation regimes are estimated from the radar data and have been compared. The Joss–Waldvogel Disdrometer measurements have been used to derive DSD parameters and polarimetric rain-rate relation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saranya Sasidharan, saranyass93@gmail.com

Abstract

This paper describes the rainfall and microphysical structure of precipitation associated with Tropical Cyclone Ockhi using polarimetric Doppler weather radar (PDWR) products. The study reports the statistical analysis of precipitation types of tropical cyclone cloud systems over the north Indian Ocean, by combining the observations of the PDWR and disdrometer for the first time. There are few studies that mention initial DWR observations of TC over this low-latitude region below 23.5°N. We tried to further carry out a statistical analysis of precipitating clouds in a cyclone from its depression stage to severe cyclonic stage. This study tries to classify and quantify the contribution of convective and stratiform rain to the total TC rainfall. Precipitating clouds have been classified into convective and stratiform based on reflectivity measurements. The vertical profiles (VPRs) of the radar reflectivity Z and the differential reflectivity ZDR obtained for the stratiform and the convective events are compared. A study of the VPR of the convective events reveals that the Z and ZDR parameters tend to increase as the raindrops descend toward the ground owing to enhanced collision–coalescence processes. The VPR of stratiform rain shows signatures of the bright band (BB). The drop size distribution (DSD) parameters and rainfall rate pertaining to the two different precipitation regimes are estimated from the radar data and have been compared. The Joss–Waldvogel Disdrometer measurements have been used to derive DSD parameters and polarimetric rain-rate relation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saranya Sasidharan, saranyass93@gmail.com
Save
  • Anagnostou, M. N., E. N. Anagnostou, J. Vivekanandan, and F. L. Ogden, 2008: Comparison of two raindrop size distribution retrieval algorithms for X-band dual polarization observations. J. Hydrometeor., 9, 589600, https://doi.org/10.1175/2007JHM904.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475, https://doi.org/10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

  • Bringi, V. N., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645, https://doi.org/10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, https://doi.org/10.1175/2009JTECHA1258.1.

    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, https://doi.org/10.1175/2009JTECHA1236.1.

    • Search Google Scholar
    • Export Citation
  • Chen, B., Y. Wang, and J. Ming, 2012: Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteor., 18, 162171, https://doi.org/10.3969/j.issn.1006-8775.2012.02.006.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 45214541, https://doi.org/10.1175/MWR-D-17-0035.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 45, 13 51313 522, https://doi.org/10.1029/2018GL080739.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., G. J. Holland, and P. T. May, 2006: Mechanisms for the generation of mesoscale vorticity features in tropical cyclone rainbands. Mon. Wea. Rev., 134, 26492669, https://doi.org/10.1175/MWR3222.1.

    • Search Google Scholar
    • Export Citation
  • Fritz, C., Z. Wang, S. W. Nesbitt, and T. J. Dunkerton, 2016: Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. Geophys. Res. Lett., 43, 894901, https://doi.org/10.1002/2015GL067122.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68, 240246.

  • Kalina, E. A., and Coauthors, 2017: The ice water paths of small and large ice species in Hurricanes Arthur (2014) and Irene (2011). J. Appl. Meteor. Climatol., 56, 13831404, https://doi.org/10.1175/JAMC-D-16-0300.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Opt. Express, 22, 16551660, https://doi.org/10.1364/OE.22.001655.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., D. Cimini, and M. Montopoli, 2010: Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data. Atmos. Res., 97, 583600, https://doi.org/10.1016/j.atmosres.2010.03.019.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56, 12241228, https://doi.org/10.1175/1520-0469(1999)056<1224:TROPVG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. D. Kepert, and T. D. Keenan, 2008: Polarimetric radar observations of the persistently asymmetric structure of Tropical Cyclone Ingrid. Mon. Wea. Rev., 136, 616630, https://doi.org/10.1175/2007MWR2077.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, S., J. Shanmuga Sundari, B. Channabasava, and V. K. Anandan, 2020: First indigenously developed polarimetric C-band Doppler weather radar in India and its first hand validation results. J. Electromagn. Waves Appl., 34, 825840, https://doi.org/10.1080/09205071.2020.1742798.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., and S. R. Brodzik, 2016: Rainfall-type categorization of radar echoes using polar coordinate reflectivity data. J. Atmos. Oceanic Technol., 33, 523538, https://doi.org/10.1175/JTECH-D-15-0135.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnic, 2019: Radar Polarimetry for Weather Observations. 1st ed. Springer, 486 pp.

  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and R. A. Houze Jr., 1993: Three-dimensional validation at TRMM ground truth sites: Some early results from Darwin, Australia. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 417–420.

  • Tao, C., H. Jiang, and J. Zawislak, 2017: The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Mon. Wea. Rev., 145, 795809, https://doi.org/10.1175/MWR-D-16-0316.1.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, https://doi.org/10.1175/JTECH2051.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, https://doi.org/10.1175/2010JTECHA1349.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, https://doi.org/10.1175/2007MWR2122.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230, https://doi.org/10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. Delli Passeri, A. G. Giola, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous area. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Wang, M., K. Zhao, M. Xue, G. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12 41512 433, https://doi.org/10.1002/2016JD025307.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. F., 2016: Weather Radar Polarimetry. CRC Press, 304 pp.

All Time Past Year Past 30 Days
Abstract Views 198 198 29
Full Text Views 52 52 17
PDF Downloads 79 79 28