Automatic Identification of Three-Body Scatter Spike Based on Jensen–Shannon Divergence and Support Vector Machine

Lei Meng aKey Laboratory of Hunan Meteorological Disaster Prevention and Mitigation, Changsha, Hunan Province, China
bChina Meteorological Administration Training Center Hunan Branch, Changsha, Hunan Province, China

Search for other papers by Lei Meng in
Current site
Google Scholar
PubMed
Close
,
Youwei Sang aKey Laboratory of Hunan Meteorological Disaster Prevention and Mitigation, Changsha, Hunan Province, China
bChina Meteorological Administration Training Center Hunan Branch, Changsha, Hunan Province, China

Search for other papers by Youwei Sang in
Current site
Google Scholar
PubMed
Close
, and
Jia Tang aKey Laboratory of Hunan Meteorological Disaster Prevention and Mitigation, Changsha, Hunan Province, China
cHunan Meteorological Observatory, Changsha, Hunan Province, China

Search for other papers by Jia Tang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The three-body scatter spike (TBSS), an echo artifact in radar imagery, manifests as a weak, linear echo extending radially from a core of high reflectivity. Adequately, though not indispensably, indicating the presence of large hail in convective storms, the automatic identification of the TBSS proves advantageous in significantly improving the effectiveness of hailstorm detection. This study introduces an algorithm that synergizes Jensen–Shannon divergence (JSD) and support vector machine (SVM) for rapid TBSS detection in two decades’ worth of single-polarization radar data across China. The algorithm, tested on data from 50 S-band China Next Generation Weather Radar (CINRAD) in central and eastern China, utilized reflectivity factor images for sample extraction. An application in Chenzhou, China, demonstrates the algorithm’s efficacy in improving hailstorm detection resolution.

Significance Statement

In recent years, China’s hail recordkeeping, primarily based on manual observations at national surface meteorological stations, has suffered from limited spatial and temporal detail. However, the advent of the China Next Generation Weather Radar (CINRAD) network offers a new avenue for hailstorm detection. TBSS, a secondary but significant indicator for large hail in S-band radar, presents an opportunity for enhanced hail warning capabilities. By automating TBSS detection in radar archives spanning two decades, this research significantly enhances the resolution of hailstorm climatology, contributing to more effective hail disaster mitigation and management.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youwei Sang, ywsang@163.com

Abstract

The three-body scatter spike (TBSS), an echo artifact in radar imagery, manifests as a weak, linear echo extending radially from a core of high reflectivity. Adequately, though not indispensably, indicating the presence of large hail in convective storms, the automatic identification of the TBSS proves advantageous in significantly improving the effectiveness of hailstorm detection. This study introduces an algorithm that synergizes Jensen–Shannon divergence (JSD) and support vector machine (SVM) for rapid TBSS detection in two decades’ worth of single-polarization radar data across China. The algorithm, tested on data from 50 S-band China Next Generation Weather Radar (CINRAD) in central and eastern China, utilized reflectivity factor images for sample extraction. An application in Chenzhou, China, demonstrates the algorithm’s efficacy in improving hailstorm detection resolution.

Significance Statement

In recent years, China’s hail recordkeeping, primarily based on manual observations at national surface meteorological stations, has suffered from limited spatial and temporal detail. However, the advent of the China Next Generation Weather Radar (CINRAD) network offers a new avenue for hailstorm detection. TBSS, a secondary but significant indicator for large hail in S-band radar, presents an opportunity for enhanced hail warning capabilities. By automating TBSS detection in radar archives spanning two decades, this research significantly enhances the resolution of hailstorm climatology, contributing to more effective hail disaster mitigation and management.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youwei Sang, ywsang@163.com
Save
  • Aizerman, M. A., E. M. Braverman, and L. I. Rozoner, 1964: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control, 25, 821837.

    • Search Google Scholar
    • Export Citation
  • Bai, L., G. Chen, and L. Huang, 2020: Image processing of radar mosaics for the climatology of convection initiation in South China. J. Appl. Meteor. Climatol., 59, 6581, https://doi.org/10.1175/JAMC-D-19-0081.1.

    • Search Google Scholar
    • Export Citation
  • Bian, Y., Y. Hu, M. Li, J. Li, M. Huang, and X. Ma, 2023: Hail climatology and its possible attributions in Beijing, China: 1980–2021. Front. Environ. Sci., 10, 1097766, https://doi.org/10.3389/fenvs.2022.1097766.

    • Search Google Scholar
    • Export Citation
  • Bole, A. G., A. D. Wall, A. Norris, and W. O. Dineley, 2005: Radar and ARPA Manual. 2nd ed. Butterworth-Heinemann, 544 pp.

  • Boneh, T., G. T. Weymouth, P. Newham, R. Potts, J. Bally, A. E. Nicholson, and K. B. Korb, 2015: Fog forecasting for Melbourne Airport using a Bayesian decision network. Wea. Forecasting, 30, 12181233, https://doi.org/10.1175/WAF-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
  • Brook, J. P., J. S. Soderholm, A. Protat, H. McGowan, and R. A. Warren, 2024: A radar-based hail climatology of Australia. Mon. Wea. Rev., 152, 607628, https://doi.org/10.1175/MWR-D-23-0130.1.

    • Search Google Scholar
    • Export Citation
  • Bruni, V., E. Rossi, and D. Vitulano, 2013: Jensen–Shannon divergence for visual quality assessment. Signal Image Video Process., 7, 411421, https://doi.org/10.1007/s11760-013-0444-3.

    • Search Google Scholar
    • Export Citation
  • Cao, Y., D. Su, X. Fan, and H. Chen, 2019: Evaluating the algorithm for correction of the bright band effects in QPEs with S-, C- and X-Band dual-polarized radars. Adv. Atmos. Sci., 36, 4154, https://doi.org/10.1007/s00376-018-8032-7.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-C., and C.-J. Lin, 2011: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2 (3), 127, https://doi.org/10.1145/1961189.1961199.

    • Search Google Scholar
    • Export Citation
  • Corcoran, J. J., I. D. Wilson, and J. A. Ware, 2003: Predicting the geo-temporal variations of crime and disorder. Int. J. Forecasting, 19, 623634, https://doi.org/10.1016/S0169-2070(03)00095-5.

    • Search Google Scholar
    • Export Citation
  • Cover, T. M., and J. A. Thomas, 2006: Elements of Information Theory. 2nd ed. John Wiley and Sons, 748 pp.

  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the Hail Differential Reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, https://doi.org/10.1175/JAM2529.1.

    • Search Google Scholar
    • Export Citation
  • Fuglede, B., and F. Topsoe, 2004: Jensen-Shannon divergence and Hilbert space embedding. Int. Symp. on Information Theory, 2004. ISIT 2004. Proc., Chicago, IL, Institute of Electrical and Electronics Engineers, 1–31, https://doi.org/10.1109/ISIT.2004.1365067.

  • Gagne, D. J., II, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and E. R. Hilgendorf, 2001: Observations of a severe left moving thunderstorm. Wea. Forecasting, 16, 500511, https://doi.org/10.1175/1520-0434(2001)016<0500:OOASLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, S., Y. Liu, Y. Luo, M. Yang, and C. Luo, 2022: Automatic radial velocity dealiasing algorithm for S-band Doppler weather radar (in Chinese). Acta Meteor. Sin., 80, 791805, https://doi.org/10.11676/qxxb2022.059.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, https://doi.org/10.1175/WAF956.1.

    • Search Google Scholar
    • Export Citation
  • Huang, S., N. Cai, P. P. Pacheco, S. Narrandes, Y. Wang, and W. Xu, 2018: Applications of Support Vector Machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 15, 4151, https://doi.org/10.21873/cgp.20063.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and V. N. Bringi, 2000: The effects of three-body scattering on differential reflectivity signatures. J. Atmos. Oceanic Technol., 17, 5161, https://doi.org/10.1175/1520-0426(2000)017<0051:TEOTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jelić, D., O. A. Megyeri, B. Malečić, A. B. Vozila, N. S. Mahović, and M. T. Prtenjak, 2020: Hail climatology along the northeastern Adriatic. J. Geophys. Res. Atmos., 125, e2020JD032749, https://doi.org/10.1029/2020JD032749.

    • Search Google Scholar
    • Export Citation
  • Kecman, V., 2005: Support vector machines – An introduction. Support Vector Machines: Theory and Applications, L. Wang, Ed., Studies in Fuzziness and Soft Computing, Vol. 177, Springer, 1–47.

  • Keerthi, S. S., and C.-J. Lin, 2003: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput., 15, 16671689, https://doi.org/10.1162/089976603321891855.

    • Search Google Scholar
    • Export Citation
  • Kolios, S., 2023: Hail detection from Meteosat satellite imagery using a deep learning neural network and a new remote sensing index. Adv. Space Res., 72, 30093021, https://doi.org/10.1016/j.asr.2023.06.016.

    • Search Google Scholar
    • Export Citation
  • Kullback, S., and R. A. Leibler, 1951: On information and sufficiency. Ann. Math. Stat., 22, 7986, https://doi.org/10.1214/aoms/1177729694.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1998: The radar “three-body scatter spike”: An operational large-hail signature. Wea. Forecasting, 13, 327340, https://doi.org/10.1175/1520-0434(1998)013<0327:TRTBSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., Q. Zhang, T. Zou, J. Lin, H. Kong, and Z. Ren, 2018: Climatology of hail frequency and size in China, 1980–2015. J. Appl. Meteor. Climatol., 57, 875887, https://doi.org/10.1175/JAMC-D-17-0208.1.

    • Search Google Scholar
    • Export Citation
  • Liao, Y.-F., X.-D. Yu, L.-L. Wu, C.-F. Han, and Z.-H. Yin, 2007: Statistic and case studies on radar three-body scattering of severe hailstorm (in Chinese). Plateau Meteor., 26, 812820.

    • Search Google Scholar
    • Export Citation
  • Lin, J., 1991: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory, 37, 145151, https://doi.org/10.1109/18.61115.

    • Search Google Scholar
    • Export Citation
  • Lindley, T., and L. Lemon, 2007: Preliminary observations of weak three-body scatter spikes associated with low-end severe hail. Electron. J. Severe Storms Meteor., 2 (3), https://doi.org/10.55599/ejssm.v2i3.8.

    • Search Google Scholar
    • Export Citation
  • Liu, R., H. Dai, Y. Y. Chen, H. Zhu, D. Wu, H. Li, D. Li, and C. Zhou, 2024: A study on the DAM-EfficientNet hail rapid identification algorithm based on FY-4A_AGRI. Sci. Rep., 14, 3505, https://doi.org/10.1038/s41598-024-54142-5.

    • Search Google Scholar
    • Export Citation
  • Lionis, A., K. P. Peppas, H. E. Nistazakis, and A. Tsigopoulos, 2021: RSSI probability density functions comparison using Jensen-Shannon divergence and Pearson distribution. Technologies, 9, 26, https://doi.org/10.3390/technologies9020026.

    • Search Google Scholar
    • Export Citation
  • Lukach, M., L. Foresti, O. Giot, and L. Delobbe, 2017: Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteor. Appl., 24, 250259, https://doi.org/10.1002/met.1623.

    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2014: Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality. J. Appl. Meteor. Climatol., 53, 20172033, https://doi.org/10.1175/JAMC-D-13-0358.1.

    • Search Google Scholar
    • Export Citation
  • Majtey, A. P., P. W. Lamberti, and D. P. Prato, 2005: Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev., 72A, 052310, https://doi.org/10.1103/PhysRevA.72.052310.

    • Search Google Scholar
    • Export Citation
  • Meng, E., S. Huang, Q. Huang, W. Fang, L. Wu, and L. Wang, 2019: A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. J. Hydrol., 568, 462478, https://doi.org/10.1016/j.jhydrol.2018.11.015.

    • Search Google Scholar
    • Export Citation
  • Moghaddamnia, A., M. G. Gousheh, J. Piri, S. Amin, and D. Han, 2009: Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour., 32, 8897, https://doi.org/10.1016/j.advwatres.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Montopoli, M., E. Picciotti, L. Baldini, S. Di Fabio, F. S. Marzano, and G. Vulpiani, 2021: Gazing inside a giant-hail-bearing Mediterranean supercell by dual-polarization Doppler weather radar. Atmos. Res., 264, 105852, https://doi.org/10.1016/j.atmosres.2021.105852.

    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM core observatory satellite sensors. J. Appl. Meteor. Climatol., 56, 19391957, https://doi.org/10.1175/JAMC-D-16-0368.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann, 2016: Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high resolution, radar-based analysis. Quart. J. Roy. Meteor. Soc., 142, 15901604, https://doi.org/10.1002/qj.2771.

    • Search Google Scholar
    • Export Citation
  • Noori, R., A. R. Karbassi, A. Moghaddamnia, D. Han, M. H. Zokaei-Ashtiani, A. Farokhnia, and M. G. Gousheh, 2011: Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol., 401, 177189, https://doi.org/10.1016/j.jhydrol.2011.02.021.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Pilorz, W., M. Zięba, J. Szturc, and E. Łupikasza, 2022: Large hail detection using radar-based VIL calibrated with isotherms from the ERA5 reanalysis. Atmos. Res., 274, 106185, https://doi.org/10.1016/j.atmosres.2022.106185.

    • Search Google Scholar
    • Export Citation
  • Powers, D. M. W., 2020: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv, 2010.16061v1, https://doi.org/10.48550/arXiv.2010.16061.

  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sethy, P. K., S. K. Behera, P. K. Ratha, and P. Biswas, 2020: Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int. J. Math. Eng. Manage. Sci., 5, 643651, https://doi.org/10.33889/IJMEMS.2020.5.4.052.

    • Search Google Scholar
    • Export Citation
  • Skripniková, K., and D. Řezáčová, 2014: Radar-based hail detection. Atmos. Res., 144, 175185, https://doi.org/10.1016/j.atmosres.2013.06.002.

    • Search Google Scholar
    • Export Citation
  • Tsai, C.-A., and Y.-J. Chang, 2023: Efficient selection of Gaussian kernel SVM parameters for imbalanced data. Genes, 14, 583, https://doi.org/10.3390/genes14030583.

    • Search Google Scholar
    • Export Citation
  • Vapnik, V., S. E. Golowich, and A. Smola, 1997: Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing Systems, M. C. Mozer, M. Jordan, and T. Petsche, Eds., MIT Press, 281–287.

  • Wen, H., L. P. Liu, C. A. Zhang, C. G. Yin, Y. Zhang, and C. Shi, 2016: Operational evaluation of radar data quality control for ground clutter and electromagnetic interference (in Chinese). J. Meteor. Sci., 36, 789799.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 4th ed. Academic Press, 676 pp.

  • Wilson, J. W., and D. Reum, 1988: The flare echo: Reflectivity and velocity signature. J. Atmos. Oceanic Technol., 5, 197205, https://doi.org/10.1175/1520-0426(1988)005<0197:TFERAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, X., X. Yao, T. Xiong, X. Zhou, H. Wu, B. Deng, and Y. Song, 2006: The Principle and Application of Doppler Weather Radar (in Chinese). China Meteorological Press, 314 pp.

  • Zhang, Y., H. Li, A. Hou, and J. Havel, 2006: Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks. Chemom. Intell. Lab. Syst., 82, 165175, https://doi.org/10.1016/j.chemolab.2005.08.012.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1987: Three-body scattering produces precipitation signature of special diagnostic value. Radio Sci., 22, 7686, https://doi.org/10.1029/RS022i001p00076.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., G. Zhang, V. Melnikov, and J. Andric, 2010: Three-body scattering and hail size. J. Appl. Meteor. Climatol., 49, 687700, https://doi.org/10.1175/2009JAMC2300.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 589 589 589
Full Text Views 59 59 59
PDF Downloads 69 69 69