Variations in Simulated GMI Brightness Temperatures due to Varying Particle Size Distribution Models and Hydrometeor Characteristics in a Severe Hailstorm

Kenneth D. Leppert II University of Louisiana Monroe, Monroe, Louisiana

Search for other papers by Kenneth D. Leppert II in
Current site
Google Scholar
PubMed
Close
and
Daniel J. Cecil NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atmospheric Radiative Transfer Simulator was used to conduct several simulations of Global Precipitation Measurement Microwave Imager brightness temperatures (BTs; 10.65–183.31 ± 7-GHz) over a severe hailstorm. Simulations were conducted to test the sensitivity of BTs to particle size distribution form and to the size, orientation, and shape of several hydrometeor types assuming constant S-band radar reflectivity. Results show an increase in BT (i.e., less scattering) at most frequencies when changing from a normalized gamma distribution (NGD) to exponential distribution (EXPD). This change causes a decrease in cumulative hydrometeor surface area, but not necessarily a decrease in number concentration, suggesting that surface area exerts a stronger influence on BTs than concentration. Simulated BTs at the highest frequencies (166.0–183.31 ± 7 GHz) agree better with observations when using an EXPD for cloud ice. At lower frequencies, especially 36.5–89.0 GHz, using an NGD for high-density graupel and hail leads to a better match between simulated and observed BTs. No clear preference is seen for low-density graupel, liquid precipitation, or snow. The impact of changing particle shape and/or orientation depends on the hydrometeor type. Changing the orientation of cloud ice from horizontal to a random orientation increases simulated BTs, while having no effect for high-density graupel. Assuming horizontally oriented, oblate-spheroid cloud ice results in simulated BTs that match better with observed. Finally, under the fixed reflectivity constraint, increasing the diameter of hail from 0.5 to 20 cm results in an increase in minimum BT up to 1.5-cm diameter with near constant BT at all frequencies thereafter.

Significance Statement

Accurate estimates of precipitation are important for numerous applications, and only satellite instruments can provide a global, uniform estimate of precipitation. This study seeks to use simulations to better understand how microwave radiation interacts with various hydrometeor types to improve the assumptions on which satellite-based precipitation estimates are based and ultimately improve the estimates themselves. Results indicate that an exponential distribution may be more appropriate for cloud ice and a normalized gamma distribution more appropriate for hail and high-density graupel. Other hydrometeor types (e.g., rain) show no clear preference for either distribution. Furthermore, assuming cloud ice is an oblate spheroid with horizontal orientation produces simulated brightness temperatures that better match those observed than assuming spherical ice or other orientations.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth Leppert II, leppert@ulm.edu

Abstract

The Atmospheric Radiative Transfer Simulator was used to conduct several simulations of Global Precipitation Measurement Microwave Imager brightness temperatures (BTs; 10.65–183.31 ± 7-GHz) over a severe hailstorm. Simulations were conducted to test the sensitivity of BTs to particle size distribution form and to the size, orientation, and shape of several hydrometeor types assuming constant S-band radar reflectivity. Results show an increase in BT (i.e., less scattering) at most frequencies when changing from a normalized gamma distribution (NGD) to exponential distribution (EXPD). This change causes a decrease in cumulative hydrometeor surface area, but not necessarily a decrease in number concentration, suggesting that surface area exerts a stronger influence on BTs than concentration. Simulated BTs at the highest frequencies (166.0–183.31 ± 7 GHz) agree better with observations when using an EXPD for cloud ice. At lower frequencies, especially 36.5–89.0 GHz, using an NGD for high-density graupel and hail leads to a better match between simulated and observed BTs. No clear preference is seen for low-density graupel, liquid precipitation, or snow. The impact of changing particle shape and/or orientation depends on the hydrometeor type. Changing the orientation of cloud ice from horizontal to a random orientation increases simulated BTs, while having no effect for high-density graupel. Assuming horizontally oriented, oblate-spheroid cloud ice results in simulated BTs that match better with observed. Finally, under the fixed reflectivity constraint, increasing the diameter of hail from 0.5 to 20 cm results in an increase in minimum BT up to 1.5-cm diameter with near constant BT at all frequencies thereafter.

Significance Statement

Accurate estimates of precipitation are important for numerous applications, and only satellite instruments can provide a global, uniform estimate of precipitation. This study seeks to use simulations to better understand how microwave radiation interacts with various hydrometeor types to improve the assumptions on which satellite-based precipitation estimates are based and ultimately improve the estimates themselves. Results indicate that an exponential distribution may be more appropriate for cloud ice and a normalized gamma distribution more appropriate for hail and high-density graupel. Other hydrometeor types (e.g., rain) show no clear preference for either distribution. Furthermore, assuming cloud ice is an oblate spheroid with horizontal orientation produces simulated brightness temperatures that better match those observed than assuming spherical ice or other orientations.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth Leppert II, leppert@ulm.edu
Save
  • Adler, R. F., H.-Y. M. Yeh, N. Prasad, W.-K. Tao, and J. Simpson, 1991: Microwave simulations of a tropical rainfall system with a three-dimensional cloud model. J. Appl. Meteor., 30, 924953, https://doi.org/10.1175/1520-0450-30.7.924.

    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58, 18891904, https://doi.org/10.1175/JAMC-D-19-0042.1.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, https://doi.org/10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626.

    • Search Google Scholar
    • Export Citation
  • Borque, P., K. J. Harnos, S. W. Nesbitt, and G. M. McFarquhar, 2019: Improved parameterization of ice particle size distributions using uncorrelated mass spectrum parameters: Results from GCPEx. J. Appl. Meteor. Climatol., 58, 16571676, https://doi.org/10.1175/JAMC-D-18-0203.1.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., J. Mendrok, P. Eriksson, A. Perrin, R. Larson, and O. Lemke, 2018: ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition. Geosci. Model Dev., 11, 15371556, https://doi.org/10.5194/gmd-11-1537-2018.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, https://doi.org/10.1175/2009JAMC2125.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and T. Chronis, 2018: Polarization-corrected temperatures for 10-, 19-, 37-, and 89-GHz passive microwave frequencies. J. Appl. Meteor. Climatol., 57, 22492265, https://doi.org/10.1175/JAMC-D-18-0022.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Bennartz, 2020: Sensitivity of 89–190-GHz microwave observations to ice particle scattering. J. Appl. Meteor. Climatol., 59, 11951215, https://doi.org/10.1175/JAMC-D-19-0293.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., C. Emde, and R. Harwood, 2005: A 3-D polarized reversed Monte Carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres. IEEE Trans. Geosci. Remote Sens., 43, 10961101, https://doi.org/10.1109/TGRS.2004.837505.

    • Search Google Scholar
    • Export Citation
  • Davis, C. P., K. F. Evans, S. A. Buehler, D. L. Wu, and H. C. Pumphrey, 2007: 3-D polarised simulations of space-borne passive mm/sub-mm midlatitude cirrus observations: A case study. Atmos. Chem. Phys., 7, 41494158, https://doi.org/10.5194/acp-7-4149-2007.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Search Google Scholar
    • Export Citation
  • Eriksson, P., S. A. Buehler, C. P. Davis, C. Emde, and O. Lemke, 2011: ARTS, the Atmospheric Radiative Transfer Simulator, version 2. J. Quant. Spectrosc. Radiat. Transfer, 112, 15511558, https://doi.org/10.1016/j.jqsrt.2011.03.001.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, https://doi.org/10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., J. Beauchamp, D. Cecil, and G. Heymsfield, 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res., 163, 2435, https://doi.org/10.1016/j.atmosres.2014.08.010.

    • Search Google Scholar
    • Export Citation
  • Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson, 2013: The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurements. J. Geophys. Res. Atmos., 118, 56675678, https://doi.org/10.1002/jgrd.50431.

    • Search Google Scholar
    • Export Citation
  • Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, P. Eriksson, J.-P. Pinty, and J.-P. Chaboureau, 2015: Meso-scale modelling and radiative transfer simulations of a snowfall event over France at microwaves for passive and active modes and evaluation with satellite observations. Atmos. Meas. Tech., 8, 16051616, https://doi.org/10.5194/amt-8-1605-2015.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and F. Baordo, 2014: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies. Atmos. Meas. Tech., 7, 18391860, https://doi.org/10.5194/amt-7-1839-2014.

    • Search Google Scholar
    • Export Citation
  • GPM Science Team, 2022: GPM GMI brightness temperatures L1B 1.5 hours 13 km V07. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 19 June 2023, https://doi.org/10.5067/GPM/GMI/GPM/1B/07.

  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hogan, R. J., R. Honeyager, J. Tyynelä, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh–Gans approximation. Quart. J. Roy. Meteor. Soc., 143, 834844, https://doi.org/10.1002/qj.2968.

    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz. Radio Sci., 40, RS4003, https://doi.org/10.1029/2004RS003129.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., G. Huffman, V. Maggioni, P. Chambon, and R. Oki, 2021: The global satellite precipitation constellation: Current status and future requirements. Bull. Amer. Meteor. Soc., 102, E1844E1861, https://doi.org/10.1175/BAMS-D-20-0299.1.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., M. S. Kulie, C. O’Dell, and R. Bennartz, 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol., 46, 615633, https://doi.org/10.1175/JAM2483.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., V. Levizzani, R. R. Ferraro, and J. Beauchamp, 2020: Hailstorm detection by satellite microwave radiometers. Remote Sens., 12, 621, https://doi.org/10.3390/rs12040621.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, and D. J. Cecil, 2015: Signatures of hydrometeor species from airborne passive microwave data for frequencies 10–183 GHz. J. Appl. Meteor. Climatol., 54, 13131334, https://doi.org/10.1175/JAMC-D-14-0145.1.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, and D. J. Cecil, 2019: Sensitivity of simulated GMI brightness temperatures to variations in particle size distributions in a severe hailstorm. J. Appl. Meteor. Climatol., 58, 19051930, https://doi.org/10.1175/JAMC-D-19-0031.1.

    • Search Google Scholar
    • Export Citation
  • Manzato, A., A. Cicogna, M. Centore, P. Battistutta, and M. Trevisan, 2022: Hailstone characteristics in northeast Italy from 29 years of hailpad data. J. Appl. Meteor. Climatol., 61, 17791795, https://doi.org/10.1175/JAMC-D-21-0251.1.

    • Search Google Scholar
    • Export Citation
  • Marra, A. C., and Coauthors, 2017: Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory. Atmos. Res., 192, 7290, https://doi.org/10.1016/j.atmosres.2017.03.019.

    • Search Google Scholar
    • Export Citation
  • McGaughey, G., E. J. Zipser, R. W. Spencer, and R. E. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947, https://doi.org/10.1175/1520-0450(1996)035<1921:HRPMOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meirold-Mautner, I., C. Prigent, E. Defer, J. R. Pardo, J.-P. Chaboureau, J.-P. Pinty, M. Mech, and S. Crewell, 2007: Radiative transfer simulations using mesoscale cloud model outputs: Comparisons with passive microwave and infrared satellite observations for midlatitudes. J. Atmos. Sci., 64, 15501568, https://doi.org/10.1175/JAS3896.1.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309324, https://doi.org/10.1016/S0022-4073(98)00008-9.

    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM Core Observatory satellite sensors. J. Appl. Meteor. Climatol., 56, 19391957, https://doi.org/10.1175/JAMC-D-16-0368.1.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information, 2015: NEXRAD data archive, inventory and access, version 6. NOAA, accessed 19 June 2023, https://www.ncdc.noaa.gov/nexradinv/.

  • Olson, W. S., 2022: GPM DPR and GMI combined precipitation L2B 1.5 hours 5 km V07. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 19 June 2023, https://doi.org/10.5067/GPM/DPRGMI/CMB/2B/07.

  • Olson, W. S., and H. Masunaga, 2022: GPM combined radar-radiometer precipitation Algorithm Theoretical Basis Document (version 2). EORC/JAXA Doc., 58 pp., https://www.eorc.jaxa.jp/GPM/doc/algorithm/GPM2011CombinedL2ATBD.pdf.

  • Olson, W. S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part II: Initial testing using radar, radiometer and in situ observations. J. Appl. Meteor. Climatol., 55, 709722, https://doi.org/10.1175/JAMC-D-15-0131.1.

    • Search Google Scholar
    • Export Citation
  • Schulte, R. M., and C. D. Kummerow, 2022: Can DSD assumptions explain the differences in satellite estimates of warm rain? J. Atmos. Oceanic Technol., 39, 18891901, https://doi.org/10.1175/JTECH-D-22-0036.1.

    • Search Google Scholar
    • Export Citation
  • Schulte, R. M., C. D. Kummerow, C. Klepp, and G. G. Mace, 2022: How accurately can warm rain realistically be retrieved with satellite sensors? Part I: DSD uncertainties. J. Appl. Meteor. Climatol., 61, 10871105, https://doi.org/10.1175/JAMC-D-21-0158.1.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, https://doi.org/10.1175/BAMS-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, G., P. Yang, P. G. Stegmann, R. L. Panetta, L. Tsang, and B. Johnson, 2017: Effect of particle shape, density, and inhomogeneity on the microwave optical properties of graupel and hailstones. IEEE Trans. Geosci. Remote Sens., 55, 63666378, https://doi.org/10.1109/TGRS.2017.2726994.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421, https://doi.org/10.1175/1520-0450(1991)030<1407:IWPEAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, https://doi.org/10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 15 15 15
Full Text Views 392 392 392
PDF Downloads 147 147 147